MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Unicode version

Theorem dfac12lem3 8313
Description: Lemma for dfac12 8317. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1  |-  ( ph  ->  A  e.  On )
dfac12.3  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
dfac12.4  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
Assertion
Ref Expression
dfac12lem3  |-  ( ph  ->  ( R1 `  A
)  e.  dom  card )
Distinct variable groups:    y, A    x, y, G    ph, y    x, F, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem dfac12lem3
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5700 . . . 4  |-  ( G `
 A )  e. 
_V
21rnex 6511 . . 3  |-  ran  ( G `  A )  e.  _V
3 ssid 3374 . . . . 5  |-  A  C_  A
4 dfac12.1 . . . . . 6  |-  ( ph  ->  A  e.  On )
5 sseq1 3376 . . . . . . . . 9  |-  ( m  =  n  ->  (
m  C_  A  <->  n  C_  A
) )
6 fveq2 5690 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( G `  m )  =  ( G `  n ) )
7 f1eq1 5600 . . . . . . . . . . 11  |-  ( ( G `  m )  =  ( G `  n )  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  m ) -1-1-> On ) )
86, 7syl 16 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  m ) -1-1-> On ) )
9 fveq2 5690 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( R1 `  m )  =  ( R1 `  n
) )
10 f1eq2 5601 . . . . . . . . . . 11  |-  ( ( R1 `  m )  =  ( R1 `  n )  ->  (
( G `  n
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
119, 10syl 16 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( G `  n
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
128, 11bitrd 253 . . . . . . . . 9  |-  ( m  =  n  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
135, 12imbi12d 320 . . . . . . . 8  |-  ( m  =  n  ->  (
( m  C_  A  ->  ( G `  m
) : ( R1
`  m ) -1-1-> On ) 
<->  ( n  C_  A  ->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) ) )
1413imbi2d 316 . . . . . . 7  |-  ( m  =  n  ->  (
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )  <->  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) ) ) )
15 sseq1 3376 . . . . . . . . 9  |-  ( m  =  A  ->  (
m  C_  A  <->  A  C_  A
) )
16 fveq2 5690 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( G `  m )  =  ( G `  A ) )
17 f1eq1 5600 . . . . . . . . . . 11  |-  ( ( G `  m )  =  ( G `  A )  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  m ) -1-1-> On ) )
1816, 17syl 16 . . . . . . . . . 10  |-  ( m  =  A  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  m ) -1-1-> On ) )
19 fveq2 5690 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( R1 `  m )  =  ( R1 `  A
) )
20 f1eq2 5601 . . . . . . . . . . 11  |-  ( ( R1 `  m )  =  ( R1 `  A )  ->  (
( G `  A
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2119, 20syl 16 . . . . . . . . . 10  |-  ( m  =  A  ->  (
( G `  A
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2218, 21bitrd 253 . . . . . . . . 9  |-  ( m  =  A  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2315, 22imbi12d 320 . . . . . . . 8  |-  ( m  =  A  ->  (
( m  C_  A  ->  ( G `  m
) : ( R1
`  m ) -1-1-> On ) 
<->  ( A  C_  A  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On ) ) )
2423imbi2d 316 . . . . . . 7  |-  ( m  =  A  ->  (
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )  <->  ( ph  ->  ( A  C_  A  ->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) ) ) )
25 r19.21v 2802 . . . . . . . 8  |-  ( A. n  e.  m  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  <->  ( ph  ->  A. n  e.  m  ( n  C_  A  -> 
( G `  n
) : ( R1
`  n ) -1-1-> On ) ) )
26 eloni 4728 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  On  ->  Ord  m )
2726ad2antrl 727 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  ->  Ord  m )
28 ordelss 4734 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  m  /\  n  e.  m )  ->  n  C_  m )
2927, 28sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  n  C_  m
)
30 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  m  C_  A
)
3129, 30sstrd 3365 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  n  C_  A
)
32 pm5.5 336 . . . . . . . . . . . . . . 15  |-  ( n 
C_  A  ->  (
( n  C_  A  ->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) 
<->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) )
3331, 32syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  ( (
n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On )  <-> 
( G `  n
) : ( R1
`  n ) -1-1-> On ) )
3433ralbidva 2730 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  <->  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )
354ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A  e.  On )
36 dfac12.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
3736ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  F : ~P (har `  ( R1 `  A ) )
-1-1-> On )
38 dfac12.4 . . . . . . . . . . . . . . 15  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
39 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  m  e.  On )
40 eqid 2442 . . . . . . . . . . . . . . 15  |-  ( `'OrdIso
(  _E  ,  ran  ( G `  U. m
) )  o.  ( G `  U. m ) )  =  ( `'OrdIso
(  _E  ,  ran  ( G `  U. m
) )  o.  ( G `  U. m ) )
41 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  m  C_  A )
42 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )
43 fveq2 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
44 f1eq1 5600 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G `  n )  =  ( G `  z )  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  n ) -1-1-> On ) )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  z  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  n ) -1-1-> On ) )
46 fveq2 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  z  ->  ( R1 `  n )  =  ( R1 `  z
) )
47 f1eq2 5601 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R1 `  n )  =  ( R1 `  z )  ->  (
( G `  z
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
4846, 47syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  z  ->  (
( G `  z
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
4945, 48bitrd 253 . . . . . . . . . . . . . . . . 17  |-  ( n  =  z  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
5049cbvralv 2946 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  m  ( G `  n ) : ( R1 `  n ) -1-1-> On  <->  A. z  e.  m  ( G `  z ) : ( R1 `  z )
-1-1-> On )
5142, 50sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A. z  e.  m  ( G `  z ) : ( R1 `  z )
-1-1-> On )
5235, 37, 38, 39, 40, 41, 51dfac12lem2 8312 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On )
5352ex 434 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) )
5434, 53sylbid 215 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )
5554expr 615 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  On )  ->  ( m 
C_  A  ->  ( A. n  e.  m  ( n  C_  A  -> 
( G `  n
) : ( R1
`  n ) -1-1-> On )  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) ) )
5655com23 78 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  On )  ->  ( A. n  e.  m  (
n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On )  ->  ( m  C_  A  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) ) )
5756expcom 435 . . . . . . . . 9  |-  ( m  e.  On  ->  ( ph  ->  ( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  (
m  C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
5857a2d 26 . . . . . . . 8  |-  ( m  e.  On  ->  (
( ph  ->  A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  -> 
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
5925, 58syl5bi 217 . . . . . . 7  |-  ( m  e.  On  ->  ( A. n  e.  m  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  -> 
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
6014, 24, 59tfis3 6467 . . . . . 6  |-  ( A  e.  On  ->  ( ph  ->  ( A  C_  A  ->  ( G `  A ) : ( R1 `  A )
-1-1-> On ) ) )
614, 60mpcom 36 . . . . 5  |-  ( ph  ->  ( A  C_  A  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On ) )
623, 61mpi 17 . . . 4  |-  ( ph  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On )
63 f1f 5605 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-> On  ->  ( G `  A ) : ( R1 `  A ) --> On )
64 frn 5564 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) --> On  ->  ran  ( G `  A
)  C_  On )
6562, 63, 643syl 20 . . 3  |-  ( ph  ->  ran  ( G `  A )  C_  On )
66 onssnum 8209 . . 3  |-  ( ( ran  ( G `  A )  e.  _V  /\ 
ran  ( G `  A )  C_  On )  ->  ran  ( G `  A )  e.  dom  card )
672, 65, 66sylancr 663 . 2  |-  ( ph  ->  ran  ( G `  A )  e.  dom  card )
68 f1f1orn 5651 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-> On  ->  ( G `  A ) : ( R1 `  A ) -1-1-onto-> ran  ( G `  A ) )
6962, 68syl 16 . . 3  |-  ( ph  ->  ( G `  A
) : ( R1
`  A ) -1-1-onto-> ran  ( G `  A )
)
70 fvex 5700 . . . 4  |-  ( R1
`  A )  e. 
_V
7170f1oen 7329 . . 3  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-onto-> ran  ( G `  A )  ->  ( R1 `  A )  ~~  ran  ( G `  A
) )
72 ennum 8116 . . 3  |-  ( ( R1 `  A ) 
~~  ran  ( G `  A )  ->  (
( R1 `  A
)  e.  dom  card  <->  ran  ( G `  A )  e.  dom  card )
)
7369, 71, 723syl 20 . 2  |-  ( ph  ->  ( ( R1 `  A )  e.  dom  card  <->  ran  ( G `  A
)  e.  dom  card ) )
7467, 73mpbird 232 1  |-  ( ph  ->  ( R1 `  A
)  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971    C_ wss 3327   ifcif 3790   ~Pcpw 3859   U.cuni 4090   class class class wbr 4291    e. cmpt 4349    _E cep 4629   Ord word 4717   Oncon0 4718   suc csuc 4720   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842    o. ccom 4843   -->wf 5413   -1-1->wf1 5414   -1-1-onto->wf1o 5416   ` cfv 5417  (class class class)co 6090  recscrecs 6830    +o coa 6916    .o comu 6917    ~~ cen 7306  OrdIsocoi 7722  harchar 7770   R1cr1 7968   rankcrnk 7969   cardccrd 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6831  df-rdg 6865  df-oadd 6923  df-omul 6924  df-er 7100  df-en 7310  df-dom 7311  df-oi 7723  df-har 7772  df-r1 7970  df-rank 7971  df-card 8108
This theorem is referenced by:  dfac12r  8314
  Copyright terms: Public domain W3C validator