MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Visualization version   Unicode version

Theorem dfac12lem3 8580
Description: Lemma for dfac12 8584. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1  |-  ( ph  ->  A  e.  On )
dfac12.3  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
dfac12.4  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
Assertion
Ref Expression
dfac12lem3  |-  ( ph  ->  ( R1 `  A
)  e.  dom  card )
Distinct variable groups:    y, A    x, y, G    ph, y    x, F, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem dfac12lem3
Dummy variables  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5880 . . . 4  |-  ( G `
 A )  e. 
_V
21rnex 6732 . . 3  |-  ran  ( G `  A )  e.  _V
3 ssid 3453 . . . . 5  |-  A  C_  A
4 dfac12.1 . . . . . 6  |-  ( ph  ->  A  e.  On )
5 sseq1 3455 . . . . . . . . 9  |-  ( m  =  n  ->  (
m  C_  A  <->  n  C_  A
) )
6 fveq2 5870 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( G `  m )  =  ( G `  n ) )
7 f1eq1 5779 . . . . . . . . . . 11  |-  ( ( G `  m )  =  ( G `  n )  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  m ) -1-1-> On ) )
86, 7syl 17 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  m ) -1-1-> On ) )
9 fveq2 5870 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( R1 `  m )  =  ( R1 `  n
) )
10 f1eq2 5780 . . . . . . . . . . 11  |-  ( ( R1 `  m )  =  ( R1 `  n )  ->  (
( G `  n
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
119, 10syl 17 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( G `  n
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
128, 11bitrd 257 . . . . . . . . 9  |-  ( m  =  n  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) )
135, 12imbi12d 322 . . . . . . . 8  |-  ( m  =  n  ->  (
( m  C_  A  ->  ( G `  m
) : ( R1
`  m ) -1-1-> On ) 
<->  ( n  C_  A  ->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) ) )
1413imbi2d 318 . . . . . . 7  |-  ( m  =  n  ->  (
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )  <->  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On ) ) ) )
15 sseq1 3455 . . . . . . . . 9  |-  ( m  =  A  ->  (
m  C_  A  <->  A  C_  A
) )
16 fveq2 5870 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( G `  m )  =  ( G `  A ) )
17 f1eq1 5779 . . . . . . . . . . 11  |-  ( ( G `  m )  =  ( G `  A )  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  m ) -1-1-> On ) )
1816, 17syl 17 . . . . . . . . . 10  |-  ( m  =  A  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  m ) -1-1-> On ) )
19 fveq2 5870 . . . . . . . . . . 11  |-  ( m  =  A  ->  ( R1 `  m )  =  ( R1 `  A
) )
20 f1eq2 5780 . . . . . . . . . . 11  |-  ( ( R1 `  m )  =  ( R1 `  A )  ->  (
( G `  A
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2119, 20syl 17 . . . . . . . . . 10  |-  ( m  =  A  ->  (
( G `  A
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2218, 21bitrd 257 . . . . . . . . 9  |-  ( m  =  A  ->  (
( G `  m
) : ( R1
`  m ) -1-1-> On  <->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) )
2315, 22imbi12d 322 . . . . . . . 8  |-  ( m  =  A  ->  (
( m  C_  A  ->  ( G `  m
) : ( R1
`  m ) -1-1-> On ) 
<->  ( A  C_  A  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On ) ) )
2423imbi2d 318 . . . . . . 7  |-  ( m  =  A  ->  (
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )  <->  ( ph  ->  ( A  C_  A  ->  ( G `  A ) : ( R1 `  A ) -1-1-> On ) ) ) )
25 r19.21v 2795 . . . . . . . 8  |-  ( A. n  e.  m  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  <->  ( ph  ->  A. n  e.  m  ( n  C_  A  -> 
( G `  n
) : ( R1
`  n ) -1-1-> On ) ) )
26 eloni 5436 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  On  ->  Ord  m )
2726ad2antrl 735 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  ->  Ord  m )
28 ordelss 5442 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  m  /\  n  e.  m )  ->  n  C_  m )
2927, 28sylan 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  n  C_  m
)
30 simplrr 772 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  m  C_  A
)
3129, 30sstrd 3444 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  n  C_  A
)
32 pm5.5 338 . . . . . . . . . . . . . . 15  |-  ( n 
C_  A  ->  (
( n  C_  A  ->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) 
<->  ( G `  n
) : ( R1
`  n ) -1-1-> On ) )
3331, 32syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  n  e.  m
)  ->  ( (
n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On )  <-> 
( G `  n
) : ( R1
`  n ) -1-1-> On ) )
3433ralbidva 2826 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  <->  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )
354ad2antrr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A  e.  On )
36 dfac12.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
3736ad2antrr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  F : ~P (har `  ( R1 `  A ) )
-1-1-> On )
38 dfac12.4 . . . . . . . . . . . . . . 15  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
39 simplrl 771 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  m  e.  On )
40 eqid 2453 . . . . . . . . . . . . . . 15  |-  ( `'OrdIso
(  _E  ,  ran  ( G `  U. m
) )  o.  ( G `  U. m ) )  =  ( `'OrdIso
(  _E  ,  ran  ( G `  U. m
) )  o.  ( G `  U. m ) )
41 simplrr 772 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  m  C_  A )
42 simpr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )
43 fveq2 5870 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  z  ->  ( G `  n )  =  ( G `  z ) )
44 f1eq1 5779 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G `  n )  =  ( G `  z )  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  n ) -1-1-> On ) )
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  z  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  n ) -1-1-> On ) )
46 fveq2 5870 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  z  ->  ( R1 `  n )  =  ( R1 `  z
) )
47 f1eq2 5780 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R1 `  n )  =  ( R1 `  z )  ->  (
( G `  z
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  z  ->  (
( G `  z
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
4945, 48bitrd 257 . . . . . . . . . . . . . . . . 17  |-  ( n  =  z  ->  (
( G `  n
) : ( R1
`  n ) -1-1-> On  <->  ( G `  z ) : ( R1 `  z ) -1-1-> On ) )
5049cbvralv 3021 . . . . . . . . . . . . . . . 16  |-  ( A. n  e.  m  ( G `  n ) : ( R1 `  n ) -1-1-> On  <->  A. z  e.  m  ( G `  z ) : ( R1 `  z )
-1-1-> On )
5142, 50sylib 200 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  A. z  e.  m  ( G `  z ) : ( R1 `  z )
-1-1-> On )
5235, 37, 38, 39, 40, 41, 51dfac12lem2 8579 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  On  /\  m  C_  A ) )  /\  A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On )
5352ex 436 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( G `  n ) : ( R1 `  n )
-1-1-> On  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) )
5434, 53sylbid 219 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  On  /\  m  C_  A ) )  -> 
( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) )
5554expr 620 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  On )  ->  ( m 
C_  A  ->  ( A. n  e.  m  ( n  C_  A  -> 
( G `  n
) : ( R1
`  n ) -1-1-> On )  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) ) )
5655com23 81 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  On )  ->  ( A. n  e.  m  (
n  C_  A  ->  ( G `  n ) : ( R1 `  n ) -1-1-> On )  ->  ( m  C_  A  ->  ( G `  m ) : ( R1 `  m )
-1-1-> On ) ) )
5756expcom 437 . . . . . . . . 9  |-  ( m  e.  On  ->  ( ph  ->  ( A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On )  ->  (
m  C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
5857a2d 29 . . . . . . . 8  |-  ( m  e.  On  ->  (
( ph  ->  A. n  e.  m  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  -> 
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
5925, 58syl5bi 221 . . . . . . 7  |-  ( m  e.  On  ->  ( A. n  e.  m  ( ph  ->  ( n  C_  A  ->  ( G `  n ) : ( R1 `  n )
-1-1-> On ) )  -> 
( ph  ->  ( m 
C_  A  ->  ( G `  m ) : ( R1 `  m ) -1-1-> On ) ) ) )
6014, 24, 59tfis3 6689 . . . . . 6  |-  ( A  e.  On  ->  ( ph  ->  ( A  C_  A  ->  ( G `  A ) : ( R1 `  A )
-1-1-> On ) ) )
614, 60mpcom 37 . . . . 5  |-  ( ph  ->  ( A  C_  A  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On ) )
623, 61mpi 20 . . . 4  |-  ( ph  ->  ( G `  A
) : ( R1
`  A ) -1-1-> On )
63 f1f 5784 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-> On  ->  ( G `  A ) : ( R1 `  A ) --> On )
64 frn 5740 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) --> On  ->  ran  ( G `  A
)  C_  On )
6562, 63, 643syl 18 . . 3  |-  ( ph  ->  ran  ( G `  A )  C_  On )
66 onssnum 8476 . . 3  |-  ( ( ran  ( G `  A )  e.  _V  /\ 
ran  ( G `  A )  C_  On )  ->  ran  ( G `  A )  e.  dom  card )
672, 65, 66sylancr 670 . 2  |-  ( ph  ->  ran  ( G `  A )  e.  dom  card )
68 f1f1orn 5830 . . . 4  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-> On  ->  ( G `  A ) : ( R1 `  A ) -1-1-onto-> ran  ( G `  A ) )
6962, 68syl 17 . . 3  |-  ( ph  ->  ( G `  A
) : ( R1
`  A ) -1-1-onto-> ran  ( G `  A )
)
70 fvex 5880 . . . 4  |-  ( R1
`  A )  e. 
_V
7170f1oen 7595 . . 3  |-  ( ( G `  A ) : ( R1 `  A ) -1-1-onto-> ran  ( G `  A )  ->  ( R1 `  A )  ~~  ran  ( G `  A
) )
72 ennum 8386 . . 3  |-  ( ( R1 `  A ) 
~~  ran  ( G `  A )  ->  (
( R1 `  A
)  e.  dom  card  <->  ran  ( G `  A )  e.  dom  card )
)
7369, 71, 723syl 18 . 2  |-  ( ph  ->  ( ( R1 `  A )  e.  dom  card  <->  ran  ( G `  A
)  e.  dom  card ) )
7467, 73mpbird 236 1  |-  ( ph  ->  ( R1 `  A
)  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889   A.wral 2739   _Vcvv 3047    C_ wss 3406   ifcif 3883   ~Pcpw 3953   U.cuni 4201   class class class wbr 4405    |-> cmpt 4464    _E cep 4746   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840    o. ccom 4841   Ord word 5425   Oncon0 5426   suc csuc 5428   -->wf 5581   -1-1->wf1 5582   -1-1-onto->wf1o 5584   ` cfv 5585  (class class class)co 6295  recscrecs 7094    +o coa 7184    .o comu 7185    ~~ cen 7571  OrdIsocoi 8029  harchar 8076   R1cr1 8238   rankcrnk 8239   cardccrd 8374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-oadd 7191  df-omul 7192  df-er 7368  df-en 7575  df-dom 7576  df-oi 8030  df-har 8078  df-r1 8240  df-rank 8241  df-card 8378
This theorem is referenced by:  dfac12r  8581
  Copyright terms: Public domain W3C validator