MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem2 Unicode version

Theorem dfac12lem2 7980
Description: Lemma for dfac12 7985. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1  |-  ( ph  ->  A  e.  On )
dfac12.3  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
dfac12.4  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
dfac12.5  |-  ( ph  ->  C  e.  On )
dfac12.h  |-  H  =  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) )
dfac12.6  |-  ( ph  ->  C  C_  A )
dfac12.8  |-  ( ph  ->  A. z  e.  C  ( G `  z ) : ( R1 `  z ) -1-1-> On )
Assertion
Ref Expression
dfac12lem2  |-  ( ph  ->  ( G `  C
) : ( R1
`  C ) -1-1-> On )
Distinct variable groups:    y, z, A    x, y, z, C   
x, G, y, z    ph, y, z    x, F, y, z    y, H, z
Allowed substitution hints:    ph( x)    A( x)    H( x)

Proof of Theorem dfac12lem2
StepHypRef Expression
1 dfac12.4 . . . . . . . . . . . . . 14  |-  G  = recs ( ( x  e. 
_V  |->  ( y  e.  ( R1 `  dom  x )  |->  if ( dom  x  =  U. dom  x ,  ( ( suc  U. ran  U. ran  x  .o  ( rank `  y ) )  +o  ( ( x `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( ( `'OrdIso (  _E  ,  ran  ( x `  U. dom  x ) )  o.  ( x `  U. dom  x ) ) "
y ) ) ) ) ) )
21tfr1 6617 . . . . . . . . . . . . 13  |-  G  Fn  On
3 fnfun 5501 . . . . . . . . . . . . 13  |-  ( G  Fn  On  ->  Fun  G )
42, 3ax-mp 8 . . . . . . . . . . . 12  |-  Fun  G
5 dfac12.5 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  On )
6 funimaexg 5489 . . . . . . . . . . . 12  |-  ( ( Fun  G  /\  C  e.  On )  ->  ( G " C )  e. 
_V )
74, 5, 6sylancr 645 . . . . . . . . . . 11  |-  ( ph  ->  ( G " C
)  e.  _V )
8 uniexg 4665 . . . . . . . . . . 11  |-  ( ( G " C )  e.  _V  ->  U. ( G " C )  e. 
_V )
9 rnexg 5090 . . . . . . . . . . 11  |-  ( U. ( G " C )  e.  _V  ->  ran  U. ( G " C
)  e.  _V )
107, 8, 93syl 19 . . . . . . . . . 10  |-  ( ph  ->  ran  U. ( G
" C )  e. 
_V )
11 dfac12.8 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. z  e.  C  ( G `  z ) : ( R1 `  z ) -1-1-> On )
12 f1f 5598 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  z ) : ( R1 `  z ) -1-1-> On  ->  ( G `  z ) : ( R1 `  z ) --> On )
13 fssxp 5561 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  z ) : ( R1 `  z ) --> On  ->  ( G `  z ) 
C_  ( ( R1
`  z )  X.  On ) )
14 ssv 3328 . . . . . . . . . . . . . . . . . . . 20  |-  ( R1
`  z )  C_  _V
15 xpss1 4943 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R1 `  z ) 
C_  _V  ->  ( ( R1 `  z )  X.  On )  C_  ( _V  X.  On ) )
1614, 15ax-mp 8 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R1 `  z )  X.  On )  C_  ( _V  X.  On )
17 sstr 3316 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G `  z
)  C_  ( ( R1 `  z )  X.  On )  /\  (
( R1 `  z
)  X.  On ) 
C_  ( _V  X.  On ) )  ->  ( G `  z )  C_  ( _V  X.  On ) )
1816, 17mpan2 653 . . . . . . . . . . . . . . . . . 18  |-  ( ( G `  z ) 
C_  ( ( R1
`  z )  X.  On )  ->  ( G `  z )  C_  ( _V  X.  On ) )
19 fvex 5701 . . . . . . . . . . . . . . . . . . 19  |-  ( G `
 z )  e. 
_V
2019elpw 3765 . . . . . . . . . . . . . . . . . 18  |-  ( ( G `  z )  e.  ~P ( _V 
X.  On )  <->  ( G `  z )  C_  ( _V  X.  On ) )
2118, 20sylibr 204 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  z ) 
C_  ( ( R1
`  z )  X.  On )  ->  ( G `  z )  e.  ~P ( _V  X.  On ) )
2212, 13, 213syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( G `  z ) : ( R1 `  z ) -1-1-> On  ->  ( G `  z )  e.  ~P ( _V 
X.  On ) )
2322ralimi 2741 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  C  ( G `  z ) : ( R1 `  z ) -1-1-> On  ->  A. z  e.  C  ( G `  z )  e.  ~P ( _V 
X.  On ) )
2411, 23syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. z  e.  C  ( G `  z )  e.  ~P ( _V 
X.  On ) )
25 onss 4730 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  On  ->  C  C_  On )
265, 25syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  C_  On )
27 fndm 5503 . . . . . . . . . . . . . . . . 17  |-  ( G  Fn  On  ->  dom  G  =  On )
282, 27ax-mp 8 . . . . . . . . . . . . . . . 16  |-  dom  G  =  On
2926, 28syl6sseqr 3355 . . . . . . . . . . . . . . 15  |-  ( ph  ->  C  C_  dom  G )
30 funimass4 5736 . . . . . . . . . . . . . . 15  |-  ( ( Fun  G  /\  C  C_ 
dom  G )  -> 
( ( G " C )  C_  ~P ( _V  X.  On ) 
<-> 
A. z  e.  C  ( G `  z )  e.  ~P ( _V 
X.  On ) ) )
314, 29, 30sylancr 645 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( G " C )  C_  ~P ( _V  X.  On ) 
<-> 
A. z  e.  C  ( G `  z )  e.  ~P ( _V 
X.  On ) ) )
3224, 31mpbird 224 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G " C
)  C_  ~P ( _V  X.  On ) )
33 sspwuni 4136 . . . . . . . . . . . . 13  |-  ( ( G " C ) 
C_  ~P ( _V  X.  On )  <->  U. ( G " C )  C_  ( _V  X.  On ) )
3432, 33sylib 189 . . . . . . . . . . . 12  |-  ( ph  ->  U. ( G " C )  C_  ( _V  X.  On ) )
35 rnss 5057 . . . . . . . . . . . 12  |-  ( U. ( G " C ) 
C_  ( _V  X.  On )  ->  ran  U. ( G " C ) 
C_  ran  ( _V  X.  On ) )
3634, 35syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ran  U. ( G
" C )  C_  ran  ( _V  X.  On ) )
37 rnxpss 5260 . . . . . . . . . . 11  |-  ran  ( _V  X.  On )  C_  On
3836, 37syl6ss 3320 . . . . . . . . . 10  |-  ( ph  ->  ran  U. ( G
" C )  C_  On )
39 ssonuni 4726 . . . . . . . . . 10  |-  ( ran  U. ( G " C
)  e.  _V  ->  ( ran  U. ( G
" C )  C_  On  ->  U. ran  U. ( G " C )  e.  On ) )
4010, 38, 39sylc 58 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ( G " C )  e.  On )
41 suceloni 4752 . . . . . . . . 9  |-  ( U. ran  U. ( G " C )  e.  On  ->  suc  U. ran  U. ( G " C )  e.  On )
4240, 41syl 16 . . . . . . . 8  |-  ( ph  ->  suc  U. ran  U. ( G " C )  e.  On )
4342ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  suc  U. ran  U. ( G " C )  e.  On )
44 rankon 7677 . . . . . . 7  |-  ( rank `  y )  e.  On
45 omcl 6739 . . . . . . 7  |-  ( ( suc  U. ran  U. ( G " C )  e.  On  /\  ( rank `  y )  e.  On )  ->  ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  e.  On )
4643, 44, 45sylancl 644 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  e.  On )
47 rankr1ai 7680 . . . . . . . . . . . 12  |-  ( y  e.  ( R1 `  C )  ->  ( rank `  y )  e.  C )
4847ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( rank `  y )  e.  C )
49 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  C  =  U. C )
5048, 49eleqtrd 2480 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( rank `  y )  e.  U. C )
51 eloni 4551 . . . . . . . . . . . . 13  |-  ( C  e.  On  ->  Ord  C )
525, 51syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  Ord  C )
5352ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  Ord  C )
54 ordsucuniel 4763 . . . . . . . . . . 11  |-  ( Ord 
C  ->  ( ( rank `  y )  e. 
U. C  <->  suc  ( rank `  y )  e.  C
) )
5553, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( rank `  y
)  e.  U. C  <->  suc  ( rank `  y
)  e.  C ) )
5650, 55mpbid 202 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  suc  ( rank `  y
)  e.  C )
5711ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  A. z  e.  C  ( G `  z ) : ( R1 `  z ) -1-1-> On )
58 fveq2 5687 . . . . . . . . . . . 12  |-  ( z  =  suc  ( rank `  y )  ->  ( G `  z )  =  ( G `  suc  ( rank `  y
) ) )
59 f1eq1 5593 . . . . . . . . . . . 12  |-  ( ( G `  z )  =  ( G `  suc  ( rank `  y
) )  ->  (
( G `  z
) : ( R1
`  z ) -1-1-> On  <->  ( G `  suc  ( rank `  y ) ) : ( R1 `  z ) -1-1-> On ) )
6058, 59syl 16 . . . . . . . . . . 11  |-  ( z  =  suc  ( rank `  y )  ->  (
( G `  z
) : ( R1
`  z ) -1-1-> On  <->  ( G `  suc  ( rank `  y ) ) : ( R1 `  z ) -1-1-> On ) )
61 fveq2 5687 . . . . . . . . . . . 12  |-  ( z  =  suc  ( rank `  y )  ->  ( R1 `  z )  =  ( R1 `  suc  ( rank `  y )
) )
62 f1eq2 5594 . . . . . . . . . . . 12  |-  ( ( R1 `  z )  =  ( R1 `  suc  ( rank `  y
) )  ->  (
( G `  suc  ( rank `  y )
) : ( R1
`  z ) -1-1-> On  <->  ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y
) ) -1-1-> On ) )
6361, 62syl 16 . . . . . . . . . . 11  |-  ( z  =  suc  ( rank `  y )  ->  (
( G `  suc  ( rank `  y )
) : ( R1
`  z ) -1-1-> On  <->  ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y
) ) -1-1-> On ) )
6460, 63bitrd 245 . . . . . . . . . 10  |-  ( z  =  suc  ( rank `  y )  ->  (
( G `  z
) : ( R1
`  z ) -1-1-> On  <->  ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y
) ) -1-1-> On ) )
6564rspcv 3008 . . . . . . . . 9  |-  ( suc  ( rank `  y
)  e.  C  -> 
( A. z  e.  C  ( G `  z ) : ( R1 `  z )
-1-1-> On  ->  ( G `  suc  ( rank `  y
) ) : ( R1 `  suc  ( rank `  y ) )
-1-1-> On ) )
6656, 57, 65sylc 58 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( G `  suc  ( rank `  y )
) : ( R1
`  suc  ( rank `  y ) ) -1-1-> On )
67 f1f 5598 . . . . . . . 8  |-  ( ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y
) ) -1-1-> On  ->  ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y
) ) --> On )
6866, 67syl 16 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( G `  suc  ( rank `  y )
) : ( R1
`  suc  ( rank `  y ) ) --> On )
69 r1elwf 7678 . . . . . . . . 9  |-  ( y  e.  ( R1 `  C )  ->  y  e.  U. ( R1 " On ) )
7069ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
y  e.  U. ( R1 " On ) )
71 rankidb 7682 . . . . . . . 8  |-  ( y  e.  U. ( R1
" On )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
7270, 71syl 16 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
y  e.  ( R1
`  suc  ( rank `  y ) ) )
7368, 72ffvelrnd 5830 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( G `  suc  ( rank `  y
) ) `  y
)  e.  On )
74 oacl 6738 . . . . . 6  |-  ( ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  e.  On  /\  ( ( G `  suc  ( rank `  y ) ) `
 y )  e.  On )  ->  (
( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
)  e.  On )
7546, 73, 74syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) )  e.  On )
76 dfac12.3 . . . . . . . 8  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) -1-1-> On )
77 f1f 5598 . . . . . . . 8  |-  ( F : ~P (har `  ( R1 `  A ) ) -1-1-> On  ->  F : ~P (har `  ( R1 `  A ) ) --> On )
7876, 77syl 16 . . . . . . 7  |-  ( ph  ->  F : ~P (har `  ( R1 `  A
) ) --> On )
7978ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  F : ~P (har `  ( R1 `  A ) ) --> On )
80 imassrn 5175 . . . . . . . 8  |-  ( H
" y )  C_  ran  H
81 fvex 5701 . . . . . . . . . . . . . . . 16  |-  ( G `
 U. C )  e.  _V
8281rnex 5092 . . . . . . . . . . . . . . 15  |-  ran  ( G `  U. C )  e.  _V
835ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  C  e.  On )
84 onuni 4732 . . . . . . . . . . . . . . . . . . . 20  |-  ( C  e.  On  ->  U. C  e.  On )
85 sucidg 4619 . . . . . . . . . . . . . . . . . . . 20  |-  ( U. C  e.  On  ->  U. C  e.  suc  U. C )
8683, 84, 853syl 19 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  U. C  e.  suc  U. C )
8752adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  Ord  C )
88 orduniorsuc 4769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Ord 
C  ->  ( C  =  U. C  \/  C  =  suc  U. C ) )
8987, 88syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  ( C  =  U. C  \/  C  =  suc  U. C ) )
9089orcanai 880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  C  =  suc  U. C )
9186, 90eleqtrrd 2481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  U. C  e.  C
)
9211ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  A. z  e.  C  ( G `  z ) : ( R1 `  z ) -1-1-> On )
93 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  U. C  -> 
( G `  z
)  =  ( G `
 U. C ) )
94 f1eq1 5593 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G `  z )  =  ( G `  U. C )  ->  (
( G `  z
) : ( R1
`  z ) -1-1-> On  <->  ( G `  U. C
) : ( R1
`  z ) -1-1-> On ) )
9593, 94syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  U. C  -> 
( ( G `  z ) : ( R1 `  z )
-1-1-> On  <->  ( G `  U. C ) : ( R1 `  z )
-1-1-> On ) )
96 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  U. C  -> 
( R1 `  z
)  =  ( R1
`  U. C ) )
97 f1eq2 5594 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R1 `  z )  =  ( R1 `  U. C )  ->  (
( G `  U. C ) : ( R1 `  z )
-1-1-> On  <->  ( G `  U. C ) : ( R1 `  U. C
) -1-1-> On ) )
9896, 97syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  U. C  -> 
( ( G `  U. C ) : ( R1 `  z )
-1-1-> On  <->  ( G `  U. C ) : ( R1 `  U. C
) -1-1-> On ) )
9995, 98bitrd 245 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  U. C  -> 
( ( G `  z ) : ( R1 `  z )
-1-1-> On  <->  ( G `  U. C ) : ( R1 `  U. C
) -1-1-> On ) )
10099rspcv 3008 . . . . . . . . . . . . . . . . . 18  |-  ( U. C  e.  C  ->  ( A. z  e.  C  ( G `  z ) : ( R1 `  z ) -1-1-> On  ->  ( G `  U. C
) : ( R1
`  U. C ) -1-1-> On ) )
10191, 92, 100sylc 58 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( G `  U. C ) : ( R1 `  U. C
) -1-1-> On )
102 f1f 5598 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  U. C
) : ( R1
`  U. C ) -1-1-> On  ->  ( G `  U. C ) : ( R1 `  U. C
) --> On )
103 frn 5556 . . . . . . . . . . . . . . . . 17  |-  ( ( G `  U. C
) : ( R1
`  U. C ) --> On 
->  ran  ( G `  U. C )  C_  On )
104101, 102, 1033syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ran  ( G `  U. C )  C_  On )
105 epweon 4723 . . . . . . . . . . . . . . . 16  |-  _E  We  On
106 wess 4529 . . . . . . . . . . . . . . . 16  |-  ( ran  ( G `  U. C )  C_  On  ->  (  _E  We  On  ->  _E  We  ran  ( G `  U. C ) ) )
107104, 105, 106ee10 1382 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  _E  We  ran  ( G `  U. C
) )
108 eqid 2404 . . . . . . . . . . . . . . . 16  |- OrdIso (  _E  ,  ran  ( G `
 U. C ) )  = OrdIso (  _E  ,  ran  ( G `
 U. C ) )
109108oiiso 7462 . . . . . . . . . . . . . . 15  |-  ( ( ran  ( G `  U. C )  e.  _V  /\  _E  We  ran  ( G `  U. C ) )  -> OrdIso (  _E  ,  ran  ( G `  U. C ) )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  ran  ( G `  U. C
) ) ,  ran  ( G `  U. C
) ) )
11082, 107, 109sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  -> OrdIso (  _E  ,  ran  ( G `  U. C
) )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) ,  ran  ( G `  U. C ) ) )
111 isof1o 6004 . . . . . . . . . . . . . 14  |-  (OrdIso (  _E  ,  ran  ( G `
 U. C ) )  Isom  _E  ,  _E  ( dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) ,  ran  ( G `  U. C ) )  -> OrdIso (  _E  ,  ran  ( G `  U. C
) ) : dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) -1-1-onto-> ran  ( G `  U. C ) )
112110, 111syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  -> OrdIso (  _E  ,  ran  ( G `  U. C
) ) : dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) -1-1-onto-> ran  ( G `  U. C ) )
113 f1ocnv 5646 . . . . . . . . . . . . 13  |-  (OrdIso (  _E  ,  ran  ( G `
 U. C ) ) : dom OrdIso (  _E  ,  ran  ( G `
 U. C ) ) -1-1-onto-> ran  ( G `  U. C )  ->  `'OrdIso (  _E  ,  ran  ( G `  U. C ) ) : ran  ( G `  U. C ) -1-1-onto-> dom OrdIso (  _E  ,  ran  ( G `  U. C
) ) )
114 f1of1 5632 . . . . . . . . . . . . 13  |-  ( `'OrdIso
(  _E  ,  ran  ( G `  U. C
) ) : ran  ( G `  U. C
)
-1-1-onto-> dom OrdIso (  _E  ,  ran  ( G `  U. C
) )  ->  `'OrdIso (  _E  ,  ran  ( G `  U. C ) ) : ran  ( G `  U. C )
-1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
115112, 113, 1143syl 19 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  `'OrdIso (  _E  ,  ran  ( G `  U. C
) ) : ran  ( G `  U. C
) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
116 f1f1orn 5644 . . . . . . . . . . . . 13  |-  ( ( G `  U. C
) : ( R1
`  U. C ) -1-1-> On  ->  ( G `  U. C ) : ( R1 `  U. C
)
-1-1-onto-> ran  ( G `  U. C ) )
117 f1of1 5632 . . . . . . . . . . . . 13  |-  ( ( G `  U. C
) : ( R1
`  U. C ) -1-1-onto-> ran  ( G `  U. C )  ->  ( G `  U. C ) : ( R1 `  U. C
) -1-1-> ran  ( G `  U. C ) )
118101, 116, 1173syl 19 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( G `  U. C ) : ( R1 `  U. C
) -1-1-> ran  ( G `  U. C ) )
119 f1co 5607 . . . . . . . . . . . 12  |-  ( ( `'OrdIso (  _E  ,  ran  ( G `  U. C
) ) : ran  ( G `  U. C
) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  /\  ( G `  U. C
) : ( R1
`  U. C ) -1-1-> ran  ( G `  U. C
) )  ->  ( `'OrdIso (  _E  ,  ran  ( G `  U. C
) )  o.  ( G `  U. C ) ) : ( R1
`  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
120115, 118, 119syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) ) : ( R1
`  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
121 dfac12.h . . . . . . . . . . . 12  |-  H  =  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) )
122 f1eq1 5593 . . . . . . . . . . . 12  |-  ( H  =  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) )  ->  ( H : ( R1 `  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `
 U. C ) )  <->  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) ) : ( R1
`  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) ) )
123121, 122ax-mp 8 . . . . . . . . . . 11  |-  ( H : ( R1 `  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `
 U. C ) )  <->  ( `'OrdIso (  _E  ,  ran  ( G `
 U. C ) )  o.  ( G `
 U. C ) ) : ( R1
`  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
124120, 123sylibr 204 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  H : ( R1 `  U. C
) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
125 f1f 5598 . . . . . . . . . 10  |-  ( H : ( R1 `  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `
 U. C ) )  ->  H :
( R1 `  U. C ) --> dom OrdIso (  _E  ,  ran  ( G `
 U. C ) ) )
126 frn 5556 . . . . . . . . . 10  |-  ( H : ( R1 `  U. C ) --> dom OrdIso (  _E  ,  ran  ( G `
 U. C ) )  ->  ran  H  C_  dom OrdIso (  _E  ,  ran  ( G `  U. C
) ) )
127124, 125, 1263syl 19 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ran  H  C_  dom OrdIso (  _E  ,  ran  ( G `  U. C ) ) )
128 harcl 7485 . . . . . . . . . . 11  |-  (har `  ( R1 `  A ) )  e.  On
129128onordi 4645 . . . . . . . . . 10  |-  Ord  (har `  ( R1 `  A
) )
130108oion 7461 . . . . . . . . . . . 12  |-  ( ran  ( G `  U. C )  e.  _V  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  e.  On )
13182, 130mp1i 12 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  e.  On )
132108oien 7463 . . . . . . . . . . . . 13  |-  ( ( ran  ( G `  U. C )  e.  _V  /\  _E  We  ran  ( G `  U. C ) )  ->  dom OrdIso (  _E  ,  ran  ( G `
 U. C ) )  ~~  ran  ( G `  U. C ) )
13382, 107, 132sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  ~~  ran  ( G `  U. C ) )
134101, 116syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( G `  U. C ) : ( R1 `  U. C
)
-1-1-onto-> ran  ( G `  U. C ) )
135 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( R1
`  U. C )  e. 
_V
136135f1oen 7087 . . . . . . . . . . . . . 14  |-  ( ( G `  U. C
) : ( R1
`  U. C ) -1-1-onto-> ran  ( G `  U. C )  ->  ( R1 `  U. C )  ~~  ran  ( G `  U. C
) )
137 ensym 7115 . . . . . . . . . . . . . 14  |-  ( ( R1 `  U. C
)  ~~  ran  ( G `
 U. C )  ->  ran  ( G `  U. C )  ~~  ( R1 `  U. C
) )
138134, 136, 1373syl 19 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ran  ( G `  U. C )  ~~  ( R1 `  U. C
) )
139 fvex 5701 . . . . . . . . . . . . . 14  |-  ( R1
`  A )  e. 
_V
140 dfac12.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  On )
141140ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  A  e.  On )
142 dfac12.6 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  C  C_  A )
143142ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  C  C_  A
)
144143, 91sseldd 3309 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  U. C  e.  A
)
145 r1ord2 7663 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  ( U. C  e.  A  ->  ( R1 `  U. C )  C_  ( R1 `  A ) ) )
146141, 144, 145sylc 58 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( R1 `  U. C )  C_  ( R1 `  A ) )
147 ssdomg 7112 . . . . . . . . . . . . . 14  |-  ( ( R1 `  A )  e.  _V  ->  (
( R1 `  U. C )  C_  ( R1 `  A )  -> 
( R1 `  U. C )  ~<_  ( R1
`  A ) ) )
148139, 146, 147mpsyl 61 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( R1 `  U. C )  ~<_  ( R1
`  A ) )
149 endomtr 7124 . . . . . . . . . . . . 13  |-  ( ( ran  ( G `  U. C )  ~~  ( R1 `  U. C )  /\  ( R1 `  U. C )  ~<_  ( R1
`  A ) )  ->  ran  ( G `  U. C )  ~<_  ( R1 `  A ) )
150138, 148, 149syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ran  ( G `  U. C )  ~<_  ( R1 `  A ) )
151 endomtr 7124 . . . . . . . . . . . 12  |-  ( ( dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  ~~  ran  ( G `  U. C )  /\  ran  ( G `  U. C
)  ~<_  ( R1 `  A ) )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C
) )  ~<_  ( R1
`  A ) )
152133, 150, 151syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  ~<_  ( R1 `  A ) )
153 elharval 7487 . . . . . . . . . . 11  |-  ( dom OrdIso (  _E  ,  ran  ( G `  U. C
) )  e.  (har
`  ( R1 `  A ) )  <->  ( dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  e.  On  /\  dom OrdIso (  _E  ,  ran  ( G `  U. C
) )  ~<_  ( R1
`  A ) ) )
154131, 152, 153sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  e.  (har `  ( R1 `  A ) ) )
155 ordelss 4557 . . . . . . . . . 10  |-  ( ( Ord  (har `  ( R1 `  A ) )  /\  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  e.  (har `  ( R1 `  A ) ) )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  C_  (har `  ( R1 `  A ) ) )
156129, 154, 155sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  C_  (har `  ( R1 `  A ) ) )
157127, 156sstrd 3318 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ran  H  C_  (har `  ( R1 `  A
) ) )
15880, 157syl5ss 3319 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( H "
y )  C_  (har `  ( R1 `  A
) ) )
159 fvex 5701 . . . . . . . 8  |-  (har `  ( R1 `  A ) )  e.  _V
160159elpw2 4324 . . . . . . 7  |-  ( ( H " y )  e.  ~P (har `  ( R1 `  A ) )  <->  ( H "
y )  C_  (har `  ( R1 `  A
) ) )
161158, 160sylibr 204 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( H "
y )  e.  ~P (har `  ( R1 `  A ) ) )
16279, 161ffvelrnd 5830 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( F `  ( H " y ) )  e.  On )
16375, 162ifclda 3726 . . . 4  |-  ( (
ph  /\  y  e.  ( R1 `  C ) )  ->  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) )  e.  On )
164163ex 424 . . 3  |-  ( ph  ->  ( y  e.  ( R1 `  C )  ->  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) )  e.  On ) )
165 iftrue 3705 . . . . . . . 8  |-  ( C  =  U. C  ->  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) )  =  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) )
166 iftrue 3705 . . . . . . . 8  |-  ( C  =  U. C  ->  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) ,  ( F `
 ( H "
z ) ) )  =  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) )
167165, 166eqeq12d 2418 . . . . . . 7  |-  ( C  =  U. C  -> 
( if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) ,  ( F `
 ( H "
z ) ) )  <-> 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) )  =  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z ) )  +o  ( ( G `
 suc  ( rank `  z ) ) `  z ) ) ) )
168167adantl 453 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  ( if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) )  =  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z ) )  +o  ( ( G `
 suc  ( rank `  z ) ) `  z ) ) ,  ( F `  ( H " z ) ) )  <->  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
)  =  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) ) )
16942ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  suc  U.
ran  U. ( G " C )  e.  On )
170 nsuceq0 4621 . . . . . . . 8  |-  suc  U. ran  U. ( G " C )  =/=  (/)
171170a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  suc  U.
ran  U. ( G " C )  =/=  (/) )
17244a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  ( rank `  y )  e.  On )
173 onsucuni 4767 . . . . . . . . . . 11  |-  ( ran  U. ( G " C
)  C_  On  ->  ran  U. ( G " C
)  C_  suc  U. ran  U. ( G " C
) )
17438, 173syl 16 . . . . . . . . . 10  |-  ( ph  ->  ran  U. ( G
" C )  C_  suc  U. ran  U. ( G " C ) )
175174ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  ran  U. ( G " C )  C_  suc  U.
ran  U. ( G " C ) )
1762a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  G  Fn  On )
17726ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  C  C_  On )
178 fnfvima 5935 . . . . . . . . . . . 12  |-  ( ( G  Fn  On  /\  C  C_  On  /\  suc  ( rank `  y )  e.  C )  ->  ( G `  suc  ( rank `  y ) )  e.  ( G " C
) )
179176, 177, 56, 178syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( G `  suc  ( rank `  y )
)  e.  ( G
" C ) )
180 elssuni 4003 . . . . . . . . . . 11  |-  ( ( G `  suc  ( rank `  y ) )  e.  ( G " C )  ->  ( G `  suc  ( rank `  y ) )  C_  U. ( G " C
) )
181 rnss 5057 . . . . . . . . . . 11  |-  ( ( G `  suc  ( rank `  y ) ) 
C_  U. ( G " C )  ->  ran  ( G `  suc  ( rank `  y ) ) 
C_  ran  U. ( G " C ) )
182179, 180, 1813syl 19 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  ->  ran  ( G `  suc  ( rank `  y )
)  C_  ran  U. ( G " C ) )
183 f1fn 5599 . . . . . . . . . . . 12  |-  ( ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y
) ) -1-1-> On  ->  ( G `  suc  ( rank `  y ) )  Fn  ( R1 `  suc  ( rank `  y
) ) )
18466, 183syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( G `  suc  ( rank `  y )
)  Fn  ( R1
`  suc  ( rank `  y ) ) )
185 fnfvelrn 5826 . . . . . . . . . . 11  |-  ( ( ( G `  suc  ( rank `  y )
)  Fn  ( R1
`  suc  ( rank `  y ) )  /\  y  e.  ( R1 ` 
suc  ( rank `  y
) ) )  -> 
( ( G `  suc  ( rank `  y
) ) `  y
)  e.  ran  ( G `  suc  ( rank `  y ) ) )
186184, 72, 185syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( G `  suc  ( rank `  y
) ) `  y
)  e.  ran  ( G `  suc  ( rank `  y ) ) )
187182, 186sseldd 3309 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( G `  suc  ( rank `  y
) ) `  y
)  e.  ran  U. ( G " C ) )
188175, 187sseldd 3309 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( G `  suc  ( rank `  y
) ) `  y
)  e.  suc  U. ran  U. ( G " C ) )
189188adantlrr 702 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  (
( G `  suc  ( rank `  y )
) `  y )  e.  suc  U. ran  U. ( G " C ) )
190 rankon 7677 . . . . . . . 8  |-  ( rank `  z )  e.  On
191190a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  ( rank `  z )  e.  On )
192 eleq1 2464 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
y  e.  ( R1
`  C )  <->  z  e.  ( R1 `  C ) ) )
193192anbi2d 685 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( ph  /\  y  e.  ( R1 `  C
) )  <->  ( ph  /\  z  e.  ( R1
`  C ) ) ) )
194193anbi1d 686 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( ( ph  /\  y  e.  ( R1 `  C ) )  /\  C  =  U. C )  <-> 
( ( ph  /\  z  e.  ( R1 `  C ) )  /\  C  =  U. C ) ) )
195 fveq2 5687 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  ( rank `  y )  =  ( rank `  z
) )
196 suceq 4606 . . . . . . . . . . . . . 14  |-  ( (
rank `  y )  =  ( rank `  z
)  ->  suc  ( rank `  y )  =  suc  ( rank `  z )
)
197195, 196syl 16 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  suc  ( rank `  y )  =  suc  ( rank `  z
) )
198197fveq2d 5691 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( G `  suc  ( rank `  y ) )  =  ( G `  suc  ( rank `  z )
) )
199 id 20 . . . . . . . . . . . 12  |-  ( y  =  z  ->  y  =  z )
200198, 199fveq12d 5693 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( G `  suc  ( rank `  y )
) `  y )  =  ( ( G `
 suc  ( rank `  z ) ) `  z ) )
201200eleq1d 2470 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( ( G `  suc  ( rank `  y
) ) `  y
)  e.  suc  U. ran  U. ( G " C )  <->  ( ( G `  suc  ( rank `  z ) ) `  z )  e.  suc  U.
ran  U. ( G " C ) ) )
202194, 201imbi12d 312 . . . . . . . . 9  |-  ( y  =  z  ->  (
( ( ( ph  /\  y  e.  ( R1
`  C ) )  /\  C  =  U. C )  ->  (
( G `  suc  ( rank `  y )
) `  y )  e.  suc  U. ran  U. ( G " C ) )  <->  ( ( (
ph  /\  z  e.  ( R1 `  C ) )  /\  C  = 
U. C )  -> 
( ( G `  suc  ( rank `  z
) ) `  z
)  e.  suc  U. ran  U. ( G " C ) ) ) )
203202, 188chvarv 2063 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( R1 `  C
) )  /\  C  =  U. C )  -> 
( ( G `  suc  ( rank `  z
) ) `  z
)  e.  suc  U. ran  U. ( G " C ) )
204203adantlrl 701 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  (
( G `  suc  ( rank `  z )
) `  z )  e.  suc  U. ran  U. ( G " C ) )
205 omopth2 6786 . . . . . . 7  |-  ( ( ( suc  U. ran  U. ( G " C
)  e.  On  /\  suc  U. ran  U. ( G " C )  =/=  (/) )  /\  (
( rank `  y )  e.  On  /\  ( ( G `  suc  ( rank `  y ) ) `
 y )  e. 
suc  U. ran  U. ( G " C ) )  /\  ( ( rank `  z )  e.  On  /\  ( ( G `  suc  ( rank `  z
) ) `  z
)  e.  suc  U. ran  U. ( G " C ) ) )  ->  ( ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
)  =  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
)  <->  ( ( rank `  y )  =  (
rank `  z )  /\  ( ( G `  suc  ( rank `  y
) ) `  y
)  =  ( ( G `  suc  ( rank `  z ) ) `
 z ) ) ) )
206169, 171, 172, 189, 191, 204, 205syl222anc 1200 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  (
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) )  =  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z ) )  +o  ( ( G `
 suc  ( rank `  z ) ) `  z ) )  <->  ( ( rank `  y )  =  ( rank `  z
)  /\  ( ( G `  suc  ( rank `  y ) ) `  y )  =  ( ( G `  suc  ( rank `  z )
) `  z )
) ) )
207196adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  suc  ( rank `  y )  =  suc  ( rank `  z
) )
208207fveq2d 5691 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  ( G `  suc  ( rank `  y ) )  =  ( G `  suc  ( rank `  z )
) )
209208fveq1d 5689 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  (
( G `  suc  ( rank `  y )
) `  z )  =  ( ( G `
 suc  ( rank `  z ) ) `  z ) )
210209eqeq2d 2415 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  (
( ( G `  suc  ( rank `  y
) ) `  y
)  =  ( ( G `  suc  ( rank `  y ) ) `
 z )  <->  ( ( G `  suc  ( rank `  y ) ) `  y )  =  ( ( G `  suc  ( rank `  z )
) `  z )
) )
21166adantlrr 702 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y )
) -1-1-> On )
212211adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  ( G `  suc  ( rank `  y ) ) : ( R1 `  suc  ( rank `  y )
) -1-1-> On )
21372adantlrr 702 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  y  e.  ( R1 `  suc  ( rank `  y )
) )
214213adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  y  e.  ( R1 `  suc  ( rank `  y )
) )
215 r1elwf 7678 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( R1 `  C )  ->  z  e.  U. ( R1 " On ) )
216 rankidb 7682 . . . . . . . . . . . . . . 15  |-  ( z  e.  U. ( R1
" On )  -> 
z  e.  ( R1
`  suc  ( rank `  z ) ) )
217215, 216syl 16 . . . . . . . . . . . . . 14  |-  ( z  e.  ( R1 `  C )  ->  z  e.  ( R1 `  suc  ( rank `  z )
) )
218217ad2antll 710 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( R1 `  C
)  /\  z  e.  ( R1 `  C ) ) )  ->  z  e.  ( R1 `  suc  ( rank `  z )
) )
219218ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  z  e.  ( R1 `  suc  ( rank `  z )
) )
220207fveq2d 5691 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  ( R1 `  suc  ( rank `  y ) )  =  ( R1 `  suc  ( rank `  z )
) )
221219, 220eleqtrrd 2481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  z  e.  ( R1 `  suc  ( rank `  y )
) )
222 f1fveq 5967 . . . . . . . . . . 11  |-  ( ( ( G `  suc  ( rank `  y )
) : ( R1
`  suc  ( rank `  y ) ) -1-1-> On  /\  ( y  e.  ( R1 `  suc  ( rank `  y ) )  /\  z  e.  ( R1 `  suc  ( rank `  y ) ) ) )  ->  (
( ( G `  suc  ( rank `  y
) ) `  y
)  =  ( ( G `  suc  ( rank `  y ) ) `
 z )  <->  y  =  z ) )
223212, 214, 221, 222syl12anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  (
( ( G `  suc  ( rank `  y
) ) `  y
)  =  ( ( G `  suc  ( rank `  y ) ) `
 z )  <->  y  =  z ) )
224210, 223bitr3d 247 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  (
( ( G `  suc  ( rank `  y
) ) `  y
)  =  ( ( G `  suc  ( rank `  z ) ) `
 z )  <->  y  =  z ) )
225224biimpd 199 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  ( R1 `  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  /\  ( rank `  y )  =  ( rank `  z
) )  ->  (
( ( G `  suc  ( rank `  y
) ) `  y
)  =  ( ( G `  suc  ( rank `  z ) ) `
 z )  -> 
y  =  z ) )
226225expimpd 587 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  (
( ( rank `  y
)  =  ( rank `  z )  /\  (
( G `  suc  ( rank `  y )
) `  y )  =  ( ( G `
 suc  ( rank `  z ) ) `  z ) )  -> 
y  =  z ) )
227195, 200jca 519 . . . . . . 7  |-  ( y  =  z  ->  (
( rank `  y )  =  ( rank `  z
)  /\  ( ( G `  suc  ( rank `  y ) ) `  y )  =  ( ( G `  suc  ( rank `  z )
) `  z )
) )
228226, 227impbid1 195 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  (
( ( rank `  y
)  =  ( rank `  z )  /\  (
( G `  suc  ( rank `  y )
) `  y )  =  ( ( G `
 suc  ( rank `  z ) ) `  z ) )  <->  y  =  z ) )
229168, 206, 2283bitrd 271 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  C  =  U. C )  ->  ( if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) )  =  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z ) )  +o  ( ( G `
 suc  ( rank `  z ) ) `  z ) ) ,  ( F `  ( H " z ) ) )  <->  y  =  z ) )
230 iffalse 3706 . . . . . . . 8  |-  ( -.  C  =  U. C  ->  if ( C  = 
U. C ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( G `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( H
" y ) ) )  =  ( F `
 ( H "
y ) ) )
231 iffalse 3706 . . . . . . . 8  |-  ( -.  C  =  U. C  ->  if ( C  = 
U. C ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  z ) )  +o  ( ( G `  suc  ( rank `  z
) ) `  z
) ) ,  ( F `  ( H
" z ) ) )  =  ( F `
 ( H "
z ) ) )
232230, 231eqeq12d 2418 . . . . . . 7  |-  ( -.  C  =  U. C  ->  ( if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) ,  ( F `
 ( H "
z ) ) )  <-> 
( F `  ( H " y ) )  =  ( F `  ( H " z ) ) ) )
233232adantl 453 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) ,  ( F `
 ( H "
z ) ) )  <-> 
( F `  ( H " y ) )  =  ( F `  ( H " z ) ) ) )
23476ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  ->  F : ~P (har `  ( R1 `  A ) ) -1-1-> On )
235161adantlrr 702 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( H " y
)  e.  ~P (har `  ( R1 `  A
) ) )
236193anbi1d 686 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( ( ph  /\  y  e.  ( R1 `  C ) )  /\  -.  C  =  U. C )  <->  ( ( ph  /\  z  e.  ( R1 `  C ) )  /\  -.  C  =  U. C ) ) )
237 imaeq2 5158 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( H " y )  =  ( H " z
) )
238237eleq1d 2470 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( H " y
)  e.  ~P (har `  ( R1 `  A
) )  <->  ( H " z )  e.  ~P (har `  ( R1 `  A ) ) ) )
239236, 238imbi12d 312 . . . . . . . . 9  |-  ( y  =  z  ->  (
( ( ( ph  /\  y  e.  ( R1
`  C ) )  /\  -.  C  = 
U. C )  -> 
( H " y
)  e.  ~P (har `  ( R1 `  A
) ) )  <->  ( (
( ph  /\  z  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( H "
z )  e.  ~P (har `  ( R1 `  A ) ) ) ) )
240239, 161chvarv 2063 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( H "
z )  e.  ~P (har `  ( R1 `  A ) ) )
241240adantlrl 701 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( H " z
)  e.  ~P (har `  ( R1 `  A
) ) )
242 f1fveq 5967 . . . . . . 7  |-  ( ( F : ~P (har `  ( R1 `  A
) ) -1-1-> On  /\  ( ( H "
y )  e.  ~P (har `  ( R1 `  A ) )  /\  ( H " z )  e.  ~P (har `  ( R1 `  A ) ) ) )  -> 
( ( F `  ( H " y ) )  =  ( F `
 ( H "
z ) )  <->  ( H " y )  =  ( H " z ) ) )
243234, 235, 241, 242syl12anc 1182 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( ( F `  ( H " y ) )  =  ( F `
 ( H "
z ) )  <->  ( H " y )  =  ( H " z ) ) )
244124adantlrr 702 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  ->  H : ( R1 `  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `
 U. C ) ) )
245 simplrl 737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
y  e.  ( R1
`  C ) )
24690fveq2d 5691 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( R1 `  C )  =  ( R1 `  suc  U. C ) )
247 r1suc 7652 . . . . . . . . . . . 12  |-  ( U. C  e.  On  ->  ( R1 `  suc  U. C )  =  ~P ( R1 `  U. C
) )
24883, 84, 2473syl 19 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( R1 `  suc  U. C )  =  ~P ( R1 `  U. C ) )
249246, 248eqtrd 2436 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( R1 `  C
) )  /\  -.  C  =  U. C )  ->  ( R1 `  C )  =  ~P ( R1 `  U. C
) )
250249adantlrr 702 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( R1 `  C
)  =  ~P ( R1 `  U. C ) )
251245, 250eleqtrd 2480 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
y  e.  ~P ( R1 `  U. C ) )
252251elpwid 3768 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
y  C_  ( R1 ` 
U. C ) )
253 simplrr 738 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
z  e.  ( R1
`  C ) )
254253, 250eleqtrd 2480 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
z  e.  ~P ( R1 `  U. C ) )
255254elpwid 3768 . . . . . . 7  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
z  C_  ( R1 ` 
U. C ) )
256 f1imaeq 5970 . . . . . . 7  |-  ( ( H : ( R1
`  U. C ) -1-1-> dom OrdIso (  _E  ,  ran  ( G `  U. C ) )  /\  ( y 
C_  ( R1 `  U. C )  /\  z  C_  ( R1 `  U. C ) ) )  ->  ( ( H
" y )  =  ( H " z
)  <->  y  =  z ) )
257244, 252, 255, 256syl12anc 1182 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( ( H "
y )  =  ( H " z )  <-> 
y  =  z ) )
258233, 243, 2573bitrd 271 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  ( R1
`  C )  /\  z  e.  ( R1 `  C ) ) )  /\  -.  C  = 
U. C )  -> 
( if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) )  =  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  z
) )  +o  (
( G `  suc  ( rank `  z )
) `  z )
) ,  ( F `
 ( H "
z ) ) )  <-> 
y  =  z ) )
259229, 258pm2.61dan 767 . . . 4  |-  ( (
ph  /\  ( y  e.  ( R1 `  C
)  /\  z  e.  ( R1 `  C ) ) )  ->  ( if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) )  =  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z ) )  +o  ( ( G `
 suc  ( rank `  z ) ) `  z ) ) ,  ( F `  ( H " z ) ) )  <->  y  =  z ) )
260259ex 424 . . 3  |-  ( ph  ->  ( ( y  e.  ( R1 `  C
)  /\  z  e.  ( R1 `  C ) )  ->  ( if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) )  =  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  z ) )  +o  ( ( G `
 suc  ( rank `  z ) ) `  z ) ) ,  ( F `  ( H " z ) ) )  <->  y  =  z ) ) )
261164, 260dom2lem 7106 . 2  |-  ( ph  ->  ( y  e.  ( R1 `  C ) 
|->  if ( C  = 
U. C ,  ( ( suc  U. ran  U. ( G " C
)  .o  ( rank `  y ) )  +o  ( ( G `  suc  ( rank `  y
) ) `  y
) ) ,  ( F `  ( H
" y ) ) ) ) : ( R1 `  C )
-1-1-> On )
262140, 76, 1, 5, 121dfac12lem1 7979 . . 3  |-  ( ph  ->  ( G `  C
)  =  ( y  e.  ( R1 `  C )  |->  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G
" C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) ) ) )
263 f1eq1 5593 . . 3  |-  ( ( G `  C )  =  ( y  e.  ( R1 `  C
)  |->  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) ) )  ->  (
( G `  C
) : ( R1
`  C ) -1-1-> On  <->  ( y  e.  ( R1
`  C )  |->  if ( C  =  U. C ,  ( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y
) )  +o  (
( G `  suc  ( rank `  y )
) `  y )
) ,  ( F `
 ( H "
y ) ) ) ) : ( R1
`  C ) -1-1-> On ) )
264262, 263syl 16 . 2  |-  ( ph  ->  ( ( G `  C ) : ( R1 `  C )
-1-1-> On  <->  ( y  e.  ( R1 `  C
)  |->  if ( C  =  U. C , 
( ( suc  U. ran  U. ( G " C )  .o  ( rank `  y ) )  +o  ( ( G `
 suc  ( rank `  y ) ) `  y ) ) ,  ( F `  ( H " y ) ) ) ) : ( R1 `  C )
-1-1-> On ) )
265261, 264mpbird 224 1  |-  ( ph  ->  ( G `  C
) : ( R1
`  C ) -1-1-> On )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916    C_ wss 3280   (/)c0 3588   ifcif 3699   ~Pcpw 3759   U.cuni 3975   class class class wbr 4172    e. cmpt 4226    _E cep 4452    We wwe 4500   Ord word 4540   Oncon0 4541   suc csuc 4543    X. cxp 4835   `'ccnv 4836   dom cdm 4837   ran crn 4838   "cima 4840    o. ccom 4841   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413    Isom wiso 5414  (class class class)co 6040  recscrecs 6591    +o coa 6680    .o comu 6681    ~~ cen 7065    ~<_ cdom 7066  OrdIsocoi 7434  harchar 7480   R1cr1 7644   rankcrnk 7645
This theorem is referenced by:  dfac12lem3  7981
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-oadd 6687  df-omul 6688  df-er 6864  df-en 7069  df-dom 7070  df-oi 7435  df-har 7482  df-r1 7646  df-rank 7647
  Copyright terms: Public domain W3C validator