MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12k Structured version   Unicode version

Theorem dfac12k 8312
Description: Equivalence of dfac12 8314 and dfac12a 8313, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dfac12k  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  A. y  e.  On  ~P ( aleph `  y )  e.  dom  card )
Distinct variable group:    x, y

Proof of Theorem dfac12k
StepHypRef Expression
1 alephon 8235 . . . 4  |-  ( aleph `  y )  e.  On
2 pweq 3860 . . . . . 6  |-  ( x  =  ( aleph `  y
)  ->  ~P x  =  ~P ( aleph `  y
) )
32eleq1d 2507 . . . . 5  |-  ( x  =  ( aleph `  y
)  ->  ( ~P x  e.  dom  card  <->  ~P ( aleph `  y )  e. 
dom  card ) )
43rspcv 3066 . . . 4  |-  ( (
aleph `  y )  e.  On  ->  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P ( aleph `  y )  e.  dom  card ) )
51, 4ax-mp 5 . . 3  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  ~P ( aleph `  y )  e.  dom  card )
65ralrimivw 2798 . 2  |-  ( A. x  e.  On  ~P x  e.  dom  card  ->  A. y  e.  On  ~P ( aleph `  y )  e.  dom  card )
7 omelon 7848 . . . . . . 7  |-  om  e.  On
8 cardon 8110 . . . . . . 7  |-  ( card `  x )  e.  On
9 ontri1 4749 . . . . . . 7  |-  ( ( om  e.  On  /\  ( card `  x )  e.  On )  ->  ( om  C_  ( card `  x
)  <->  -.  ( card `  x )  e.  om ) )
107, 8, 9mp2an 667 . . . . . 6  |-  ( om  C_  ( card `  x
)  <->  -.  ( card `  x )  e.  om )
11 cardidm 8125 . . . . . . . 8  |-  ( card `  ( card `  x
) )  =  (
card `  x )
12 cardalephex 8256 . . . . . . . 8  |-  ( om  C_  ( card `  x
)  ->  ( ( card `  ( card `  x
) )  =  (
card `  x )  <->  E. y  e.  On  ( card `  x )  =  ( aleph `  y )
) )
1311, 12mpbii 211 . . . . . . 7  |-  ( om  C_  ( card `  x
)  ->  E. y  e.  On  ( card `  x
)  =  ( aleph `  y ) )
14 r19.29 2855 . . . . . . . . 9  |-  ( ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  /\  E. y  e.  On  ( card `  x
)  =  ( aleph `  y ) )  ->  E. y  e.  On  ( ~P ( aleph `  y
)  e.  dom  card  /\  ( card `  x
)  =  ( aleph `  y ) ) )
15 pweq 3860 . . . . . . . . . . . 12  |-  ( (
card `  x )  =  ( aleph `  y
)  ->  ~P ( card `  x )  =  ~P ( aleph `  y
) )
1615eleq1d 2507 . . . . . . . . . . 11  |-  ( (
card `  x )  =  ( aleph `  y
)  ->  ( ~P ( card `  x )  e.  dom  card  <->  ~P ( aleph `  y
)  e.  dom  card ) )
1716biimparc 484 . . . . . . . . . 10  |-  ( ( ~P ( aleph `  y
)  e.  dom  card  /\  ( card `  x
)  =  ( aleph `  y ) )  ->  ~P ( card `  x
)  e.  dom  card )
1817rexlimivw 2835 . . . . . . . . 9  |-  ( E. y  e.  On  ( ~P ( aleph `  y )  e.  dom  card  /\  ( card `  x )  =  ( aleph `  y )
)  ->  ~P ( card `  x )  e. 
dom  card )
1914, 18syl 16 . . . . . . . 8  |-  ( ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  /\  E. y  e.  On  ( card `  x
)  =  ( aleph `  y ) )  ->  ~P ( card `  x
)  e.  dom  card )
2019ex 434 . . . . . . 7  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( E. y  e.  On  ( card `  x )  =  ( aleph `  y )  ->  ~P ( card `  x
)  e.  dom  card ) )
2113, 20syl5 32 . . . . . 6  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( om  C_  ( card `  x
)  ->  ~P ( card `  x )  e. 
dom  card ) )
2210, 21syl5bir 218 . . . . 5  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( -.  ( card `  x
)  e.  om  ->  ~P ( card `  x
)  e.  dom  card ) )
23 nnfi 7499 . . . . . . 7  |-  ( (
card `  x )  e.  om  ->  ( card `  x )  e.  Fin )
24 pwfi 7602 . . . . . . 7  |-  ( (
card `  x )  e.  Fin  <->  ~P ( card `  x
)  e.  Fin )
2523, 24sylib 196 . . . . . 6  |-  ( (
card `  x )  e.  om  ->  ~P ( card `  x )  e. 
Fin )
26 finnum 8114 . . . . . 6  |-  ( ~P ( card `  x
)  e.  Fin  ->  ~P ( card `  x
)  e.  dom  card )
2725, 26syl 16 . . . . 5  |-  ( (
card `  x )  e.  om  ->  ~P ( card `  x )  e. 
dom  card )
2822, 27pm2.61d2 160 . . . 4  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ~P ( card `  x )  e. 
dom  card )
29 oncardid 8122 . . . . 5  |-  ( x  e.  On  ->  ( card `  x )  ~~  x )
30 pwen 7480 . . . . 5  |-  ( (
card `  x )  ~~  x  ->  ~P ( card `  x )  ~~  ~P x )
31 ennum 8113 . . . . 5  |-  ( ~P ( card `  x
)  ~~  ~P x  ->  ( ~P ( card `  x )  e.  dom  card  <->  ~P x  e.  dom  card ) )
3229, 30, 313syl 20 . . . 4  |-  ( x  e.  On  ->  ( ~P ( card `  x
)  e.  dom  card  <->  ~P x  e.  dom  card )
)
3328, 32syl5ibcom 220 . . 3  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  ( x  e.  On  ->  ~P x  e.  dom  card )
)
3433ralrimiv 2796 . 2  |-  ( A. y  e.  On  ~P ( aleph `  y )  e.  dom  card  ->  A. x  e.  On  ~P x  e. 
dom  card )
356, 34impbii 188 1  |-  ( A. x  e.  On  ~P x  e.  dom  card  <->  A. y  e.  On  ~P ( aleph `  y )  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    C_ wss 3325   ~Pcpw 3857   class class class wbr 4289   Oncon0 4715   dom cdm 4836   ` cfv 5415   omcom 6475    ~~ cen 7303   Fincfn 7306   cardccrd 8101   alephcale 8102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-oi 7720  df-har 7769  df-card 8105  df-aleph 8106
This theorem is referenced by:  dfac12  8314
  Copyright terms: Public domain W3C validator