MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Unicode version

Theorem df2o2 7037
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 7036 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 7035 . . 3  |-  1o  =  { (/) }
32preq2i 4059 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2480 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370   (/)c0 3738   {csn 3978   {cpr 3980   1oc1o 7016   2oc2o 7017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-v 3073  df-dif 3432  df-un 3434  df-nul 3739  df-sn 3979  df-pr 3981  df-suc 4826  df-1o 7023  df-2o 7024
This theorem is referenced by:  2dom  7485  pw2eng  7520  pwcda1  8467  canthp1lem1  8923  hashpw  12309  znidomb  18112  ssoninhaus  28431  onint1  28432  pw2f1ocnv  29527
  Copyright terms: Public domain W3C validator