MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2nd2 Structured version   Unicode version

Theorem df2nd2 6681
Description: An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df2nd2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6618 . . . . . 6  |-  2nd : _V -onto-> _V
2 fofn 5643 . . . . . 6  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
31, 2ax-mp 5 . . . . 5  |-  2nd  Fn  _V
4 dffn5 5758 . . . . 5  |-  ( 2nd 
Fn  _V  <->  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) ) )
53, 4mpbi 208 . . . 4  |-  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) )
6 mptv 4405 . . . 4  |-  ( w  e.  _V  |->  ( 2nd `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
75, 6eqtri 2463 . . 3  |-  2nd  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
87reseq1i 5127 . 2  |-  ( 2nd  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )
9 resopab 5174 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 2nd `  w ) ) }
10 vex 2996 . . . . 5  |-  x  e. 
_V
11 vex 2996 . . . . 5  |-  y  e. 
_V
1210, 11op2ndd 6609 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 2nd `  w
)  =  y )
1312eqeq2d 2454 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 2nd `  w
)  <->  z  =  y ) )
1413dfoprab3 6651 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 2nd `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  y }
158, 9, 143eqtrri 2468 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2993   <.cop 3904   {copab 4370    e. cmpt 4371    X. cxp 4859    |` cres 4863    Fn wfn 5434   -onto->wfo 5437   ` cfv 5439   {coprab 6113   2ndc2nd 6597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-fo 5445  df-fv 5447  df-oprab 6116  df-1st 6598  df-2nd 6599
This theorem is referenced by:  df2ndres  26022
  Copyright terms: Public domain W3C validator