Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wdom Structured version   Unicode version

Definition df-wdom 8027
 Description: A set is weakly dominated by a "larger" set iff the "larger" set can be mapped onto the "smaller" set or the smaller set is empty; equivalently if the smaller set can be placed into bijection with some partition of the larger set. When choice is assumed (as fodom 8903), this coincides with the 1-1 definition df-dom 7526; however, it is not known whether this is a choice-equivalent or a strictly weaker form. Some discussion of this question can be found at http://boolesrings.org/asafk/2014/on-the-partition-principle/. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
df-wdom *
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-wdom
StepHypRef Expression
1 cwdom 8025 . 2 *
2 vx . . . . . 6
32cv 1436 . . . . 5
4 c0 3704 . . . . 5
53, 4wceq 1437 . . . 4
6 vy . . . . . . 7
76cv 1436 . . . . . 6
8 vz . . . . . . 7
98cv 1436 . . . . . 6
107, 3, 9wfo 5542 . . . . 5
1110, 8wex 1657 . . . 4
125, 11wo 369 . . 3
1312, 2, 6copab 4424 . 2
141, 13wceq 1437 1 *
 Colors of variables: wff setvar class This definition is referenced by:  relwdom  8034  brwdom  8035
 Copyright terms: Public domain W3C validator