![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-vtx | Structured version Visualization version Unicode version |
Description: Define the function mapping a graph to the set of its vertices. This definition is very general: It defines the set of vertices for any ordered pair as its first component, and for any other class as its "base set". It is meaningful, however, only if the ordered pair represents a graph resp. the class is an extensible structure representing a graph. (Contributed by AV, 9-Jan-2020.) (Revised by AV, 20-Sep-2020.) |
Ref | Expression |
---|---|
df-vtx |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvtx 39251 |
. 2
![]() | |
2 | vg |
. . 3
![]() ![]() | |
3 | cvv 3031 |
. . 3
![]() ![]() | |
4 | 2 | cv 1451 |
. . . . 5
![]() ![]() |
5 | 3, 3 | cxp 4837 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | wcel 1904 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | c1st 6810 |
. . . . 5
![]() ![]() | |
8 | 4, 7 | cfv 5589 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
9 | cbs 15199 |
. . . . 5
![]() ![]() | |
10 | 4, 9 | cfv 5589 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
11 | 6, 8, 10 | cif 3872 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 2, 3, 11 | cmpt 4454 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 1, 12 | wceq 1452 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: vtxval 39255 |
Copyright terms: Public domain | W3C validator |