![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > df-vdgr | Structured version Unicode version |
Description: Define the vertex degree
function (for an undirected multigraph). To be
appropriate for multigraphs, we have to double-count those edges that
contain ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-vdgr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvdg 23735 |
. 2
![]() | |
2 | vv |
. . 3
![]() ![]() | |
3 | ve |
. . 3
![]() ![]() | |
4 | cvv 3078 |
. . 3
![]() ![]() | |
5 | vu |
. . . 4
![]() ![]() | |
6 | 2 | cv 1369 |
. . . 4
![]() ![]() |
7 | 5 | cv 1369 |
. . . . . . . 8
![]() ![]() |
8 | vx |
. . . . . . . . . 10
![]() ![]() | |
9 | 8 | cv 1369 |
. . . . . . . . 9
![]() ![]() |
10 | 3 | cv 1369 |
. . . . . . . . 9
![]() ![]() |
11 | 9, 10 | cfv 5529 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | wcel 1758 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 10 | cdm 4951 |
. . . . . . 7
![]() ![]() ![]() |
14 | 12, 8, 13 | crab 2803 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | chash 12223 |
. . . . . 6
![]() ![]() | |
16 | 14, 15 | cfv 5529 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 7 | csn 3988 |
. . . . . . . 8
![]() ![]() ![]() ![]() |
18 | 11, 17 | wceq 1370 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18, 8, 13 | crab 2803 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 19, 15 | cfv 5529 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | cxad 11201 |
. . . . 5
![]() ![]() ![]() | |
22 | 16, 20, 21 | co 6203 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 5, 6, 22 | cmpt 4461 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 2, 3, 4, 4, 23 | cmpt2 6205 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 1, 24 | wceq 1370 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: vdgrfval 23737 |
Copyright terms: Public domain | W3C validator |