MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tskm Structured version   Unicode version

Definition df-tskm 9117
Description: A function that maps a set  x to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
df-tskm  |-  tarskiMap  =  (
x  e.  _V  |->  |^|
{ y  e.  Tarski  |  x  e.  y } )
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-tskm
StepHypRef Expression
1 ctskm 9116 . 2  class  tarskiMap
2 vx . . 3  setvar  x
3 cvv 3078 . . 3  class  _V
4 vy . . . . . 6  setvar  y
52, 4wel 1759 . . . . 5  wff  x  e.  y
6 ctsk 9027 . . . . 5  class  Tarski
75, 4, 6crab 2803 . . . 4  class  { y  e.  Tarski  |  x  e.  y }
87cint 4237 . . 3  class  |^| { y  e.  Tarski  |  x  e.  y }
92, 3, 8cmpt 4459 . 2  class  ( x  e.  _V  |->  |^| { y  e.  Tarski  |  x  e.  y } )
101, 9wceq 1370 1  wff  tarskiMap  =  (
x  e.  _V  |->  |^|
{ y  e.  Tarski  |  x  e.  y } )
Colors of variables: wff setvar class
This definition is referenced by:  tskmval  9118
  Copyright terms: Public domain W3C validator