MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trkgc Structured version   Unicode version

Definition df-trkgc 23709
Description: Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of [Schwabhauser] p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr 2467, so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017.)
Assertion
Ref Expression
df-trkgc  |- TarskiGC  =  { f  |  [. ( Base `  f
)  /  p ]. [. ( dist `  f
)  /  d ]. ( A. x  e.  p  A. y  e.  p  ( x d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  (
( x d y )  =  ( z d z )  ->  x  =  y )
) }
Distinct variable group:    f, d, p, x, y, z

Detailed syntax breakdown of Definition df-trkgc
StepHypRef Expression
1 cstrkgc 23691 . 2  class TarskiGC
2 vx . . . . . . . . . . 11  setvar  x
32cv 1380 . . . . . . . . . 10  class  x
4 vy . . . . . . . . . . 11  setvar  y
54cv 1380 . . . . . . . . . 10  class  y
6 vd . . . . . . . . . . 11  setvar  d
76cv 1380 . . . . . . . . . 10  class  d
83, 5, 7co 6277 . . . . . . . . 9  class  ( x d y )
95, 3, 7co 6277 . . . . . . . . 9  class  ( y d x )
108, 9wceq 1381 . . . . . . . 8  wff  ( x d y )  =  ( y d x )
11 vp . . . . . . . . 9  setvar  p
1211cv 1380 . . . . . . . 8  class  p
1310, 4, 12wral 2791 . . . . . . 7  wff  A. y  e.  p  ( x
d y )  =  ( y d x )
1413, 2, 12wral 2791 . . . . . 6  wff  A. x  e.  p  A. y  e.  p  ( x
d y )  =  ( y d x )
15 vz . . . . . . . . . . . . 13  setvar  z
1615cv 1380 . . . . . . . . . . . 12  class  z
1716, 16, 7co 6277 . . . . . . . . . . 11  class  ( z d z )
188, 17wceq 1381 . . . . . . . . . 10  wff  ( x d y )  =  ( z d z )
192, 4weq 1718 . . . . . . . . . 10  wff  x  =  y
2018, 19wi 4 . . . . . . . . 9  wff  ( ( x d y )  =  ( z d z )  ->  x  =  y )
2120, 15, 12wral 2791 . . . . . . . 8  wff  A. z  e.  p  ( (
x d y )  =  ( z d z )  ->  x  =  y )
2221, 4, 12wral 2791 . . . . . . 7  wff  A. y  e.  p  A. z  e.  p  ( (
x d y )  =  ( z d z )  ->  x  =  y )
2322, 2, 12wral 2791 . . . . . 6  wff  A. x  e.  p  A. y  e.  p  A. z  e.  p  ( (
x d y )  =  ( z d z )  ->  x  =  y )
2414, 23wa 369 . . . . 5  wff  ( A. x  e.  p  A. y  e.  p  (
x d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  (
( x d y )  =  ( z d z )  ->  x  =  y )
)
25 vf . . . . . . 7  setvar  f
2625cv 1380 . . . . . 6  class  f
27 cds 14578 . . . . . 6  class  dist
2826, 27cfv 5574 . . . . 5  class  ( dist `  f )
2924, 6, 28wsbc 3311 . . . 4  wff  [. ( dist `  f )  / 
d ]. ( A. x  e.  p  A. y  e.  p  ( x
d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  ( (
x d y )  =  ( z d z )  ->  x  =  y ) )
30 cbs 14504 . . . . 5  class  Base
3126, 30cfv 5574 . . . 4  class  ( Base `  f )
3229, 11, 31wsbc 3311 . . 3  wff  [. ( Base `  f )  /  p ]. [. ( dist `  f )  /  d ]. ( A. x  e.  p  A. y  e.  p  ( x d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  ( ( x d y )  =  ( z d z )  ->  x  =  y ) )
3332, 25cab 2426 . 2  class  { f  |  [. ( Base `  f )  /  p ]. [. ( dist `  f
)  /  d ]. ( A. x  e.  p  A. y  e.  p  ( x d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  (
( x d y )  =  ( z d z )  ->  x  =  y )
) }
341, 33wceq 1381 1  wff TarskiGC  =  { f  |  [. ( Base `  f
)  /  p ]. [. ( dist `  f
)  /  d ]. ( A. x  e.  p  A. y  e.  p  ( x d y )  =  ( y d x )  /\  A. x  e.  p  A. y  e.  p  A. z  e.  p  (
( x d y )  =  ( z d z )  ->  x  =  y )
) }
Colors of variables: wff setvar class
This definition is referenced by:  istrkgc  23716
  Copyright terms: Public domain W3C validator