MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-t0 Structured version   Unicode version

Definition df-t0 19052
Description: Define T0 or Kolmogorov spaces. A T0 space satisfies a kind of "topological extensionality" principle (compare ax-ext 2432): any two points which are members of the same open sets are equal, or in contraposition, for any two distinct points there is an open set which contains one point but not the other. This differs from T1 spaces (see ist1-2 19086) in that in a T1 space you can choose which point will be in the open set and which outside; in a T0 space you only know that one of the two points is in the set. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
df-t0  |-  Kol2  =  { j  e.  Top  | 
A. x  e.  U. j A. y  e.  U. j ( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) }
Distinct variable group:    j, o, x, y

Detailed syntax breakdown of Definition df-t0
StepHypRef Expression
1 ct0 19045 . 2  class  Kol2
2 vx . . . . . . . . 9  setvar  x
3 vo . . . . . . . . 9  setvar  o
42, 3wel 1759 . . . . . . . 8  wff  x  e.  o
5 vy . . . . . . . . 9  setvar  y
65, 3wel 1759 . . . . . . . 8  wff  y  e.  o
74, 6wb 184 . . . . . . 7  wff  ( x  e.  o  <->  y  e.  o )
8 vj . . . . . . . 8  setvar  j
98cv 1369 . . . . . . 7  class  j
107, 3, 9wral 2799 . . . . . 6  wff  A. o  e.  j  ( x  e.  o  <->  y  e.  o )
112, 5weq 1696 . . . . . 6  wff  x  =  y
1210, 11wi 4 . . . . 5  wff  ( A. o  e.  j  (
x  e.  o  <->  y  e.  o )  ->  x  =  y )
139cuni 4202 . . . . 5  class  U. j
1412, 5, 13wral 2799 . . . 4  wff  A. y  e.  U. j ( A. o  e.  j  (
x  e.  o  <->  y  e.  o )  ->  x  =  y )
1514, 2, 13wral 2799 . . 3  wff  A. x  e.  U. j A. y  e.  U. j ( A. o  e.  j  (
x  e.  o  <->  y  e.  o )  ->  x  =  y )
16 ctop 18633 . . 3  class  Top
1715, 8, 16crab 2803 . 2  class  { j  e.  Top  |  A. x  e.  U. j A. y  e.  U. j
( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) }
181, 17wceq 1370 1  wff  Kol2  =  { j  e.  Top  | 
A. x  e.  U. j A. y  e.  U. j ( A. o  e.  j  ( x  e.  o  <->  y  e.  o )  ->  x  =  y ) }
Colors of variables: wff setvar class
This definition is referenced by:  ist0  19059
  Copyright terms: Public domain W3C validator