![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-symdif | Structured version Visualization version Unicode version |
Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
df-symdif |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | cB |
. . 3
![]() ![]() | |
3 | 1, 2 | csymdif 3630 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 2 | cdif 3369 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 1 | cdif 3369 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | cun 3370 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | wceq 1448 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: symdifcom 3632 symdifeq1 3633 nfsymdif 3635 elsymdif 3636 dfsymdif3 3676 symdif0 4325 symdifv 4326 symdifid 4327 |
Copyright terms: Public domain | W3C validator |