Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-symdif Structured version   Unicode version

Definition df-symdif 29033
Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif  |-  ( A(++) B )  =  ( ( A  \  B
)  u.  ( B 
\  A ) )

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2csymdif 29032 . 2  class  ( A(++) B )
41, 2cdif 3468 . . 3  class  ( A 
\  B )
52, 1cdif 3468 . . 3  class  ( B 
\  A )
64, 5cun 3469 . 2  class  ( ( A  \  B )  u.  ( B  \  A ) )
73, 6wceq 1374 1  wff  ( A(++) B )  =  ( ( A  \  B
)  u.  ( B 
\  A ) )
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  29034  symdifeq1  29035  nfsymdif  29037  elsymdif  29038  symdif0  29039  symdifV  29040  symdifid  29041
  Copyright terms: Public domain W3C validator