MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   Unicode version

Definition df-symdif 3631
Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif  |-  ( A  /_\  B )  =  ( ( A  \  B
)  u.  ( B 
\  A ) )

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2csymdif 3630 . 2  class  ( A  /_\  B )
41, 2cdif 3369 . . 3  class  ( A 
\  B )
52, 1cdif 3369 . . 3  class  ( B 
\  A )
64, 5cun 3370 . 2  class  ( ( A  \  B )  u.  ( B  \  A ) )
73, 6wceq 1448 1  wff  ( A  /_\  B )  =  ( ( A  \  B
)  u.  ( B 
\  A ) )
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  3632  symdifeq1  3633  nfsymdif  3635  elsymdif  3636  dfsymdif3  3676  symdif0  4325  symdifv  4326  symdifid  4327
  Copyright terms: Public domain W3C validator