MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sum Unicode version

Definition df-sum 12409
Description: Define the sum of a series with an index set of integers  A.  k is normally a free variable in  B, i.e.  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. These two methods of summation produce the same result on their common region of definition (i.e. finite subsets of the upper integers) by summo 12440. Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 }  k means  1  +  2  + 
4  =  7, and  sum_ k  e.  NN  ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 12588). (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
df-sum  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
Distinct variable groups:    f, k, m, n, x    A, f, m, n, x    B, f, m, n, x
Allowed substitution hints:    A( k)    B( k)

Detailed syntax breakdown of Definition df-sum
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
3 vk . . 3  set  k
41, 2, 3csu 12408 . 2  class  sum_ k  e.  A  B
5 vm . . . . . . . . 9  set  m
65cv 1648 . . . . . . . 8  class  m
7 cuz 10422 . . . . . . . 8  class  ZZ>=
86, 7cfv 5396 . . . . . . 7  class  ( ZZ>= `  m )
91, 8wss 3265 . . . . . 6  wff  A  C_  ( ZZ>= `  m )
10 caddc 8928 . . . . . . . 8  class  +
11 cz 10216 . . . . . . . . 9  class  ZZ
123cv 1648 . . . . . . . . . . 11  class  k
1312, 1wcel 1717 . . . . . . . . . 10  wff  k  e.  A
14 cc0 8925 . . . . . . . . . 10  class  0
1513, 2, 14cif 3684 . . . . . . . . 9  class  if ( k  e.  A ,  B ,  0 )
163, 11, 15cmpt 4209 . . . . . . . 8  class  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
1710, 16, 6cseq 11252 . . . . . . 7  class  seq  m
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )
18 vx . . . . . . . 8  set  x
1918cv 1648 . . . . . . 7  class  x
20 cli 12207 . . . . . . 7  class  ~~>
2117, 19, 20wbr 4155 . . . . . 6  wff  seq  m
(  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x
229, 21wa 359 . . . . 5  wff  ( A 
C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )
2322, 5, 11wrex 2652 . . . 4  wff  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )
24 c1 8926 . . . . . . . . 9  class  1
25 cfz 10977 . . . . . . . . 9  class  ...
2624, 6, 25co 6022 . . . . . . . 8  class  ( 1 ... m )
27 vf . . . . . . . . 9  set  f
2827cv 1648 . . . . . . . 8  class  f
2926, 1, 28wf1o 5395 . . . . . . 7  wff  f : ( 1 ... m
)
-1-1-onto-> A
30 vn . . . . . . . . . . 11  set  n
31 cn 9934 . . . . . . . . . . 11  class  NN
3230cv 1648 . . . . . . . . . . . . 13  class  n
3332, 28cfv 5396 . . . . . . . . . . . 12  class  ( f `
 n )
343, 33, 2csb 3196 . . . . . . . . . . 11  class  [_ (
f `  n )  /  k ]_ B
3530, 31, 34cmpt 4209 . . . . . . . . . 10  class  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
3610, 35, 24cseq 11252 . . . . . . . . 9  class  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )
376, 36cfv 5396 . . . . . . . 8  class  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )
3819, 37wceq 1649 . . . . . . 7  wff  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)
3929, 38wa 359 . . . . . 6  wff  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
) )
4039, 27wex 1547 . . . . 5  wff  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )
4140, 5, 31wrex 2652 . . . 4  wff  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )
4223, 41wo 358 . . 3  wff  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
4342, 18cio 5358 . 2  class  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
444, 43wceq 1649 1  wff  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  sumex  12410  sumeq1f  12411  nfsum1  12413  nfsum  12414  sumeq2w  12415  sumeq2ii  12416  cbvsum  12418  zsum  12441  fsum  12443
  Copyright terms: Public domain W3C validator