MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rpss Structured version   Unicode version

Definition df-rpss 6372
Description: Define a relation which corresponds to proper subsethood df-pss 3356 on sets. This allows us to use proper subsethood with general concepts that require relations, such as strict ordering, see sorpss 6377. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
df-rpss  |- [ C.]  =  { <. x ,  y
>.  |  x  C.  y }
Distinct variable group:    x, y

Detailed syntax breakdown of Definition df-rpss
StepHypRef Expression
1 crpss 6371 . 2  class [ C.]
2 vx . . . . 5  setvar  x
32cv 1368 . . . 4  class  x
4 vy . . . . 5  setvar  y
54cv 1368 . . . 4  class  y
63, 5wpss 3341 . . 3  wff  x  C.  y
76, 2, 4copab 4361 . 2  class  { <. x ,  y >.  |  x 
C.  y }
81, 7wceq 1369 1  wff [ C.]  =  { <. x ,  y
>.  |  x  C.  y }
Colors of variables: wff setvar class
This definition is referenced by:  relrpss  6373  brrpssg  6374
  Copyright terms: Public domain W3C validator