MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-reverse Structured version   Unicode version

Definition df-reverse 12535
Description: Define an operation which reverses the order of symbols in a word. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
df-reverse  |- reverse  =  ( s  e.  _V  |->  ( x  e.  ( 0..^ ( # `  s
) )  |->  ( s `
 ( ( (
# `  s )  -  1 )  -  x ) ) ) )
Distinct variable group:    x, s

Detailed syntax breakdown of Definition df-reverse
StepHypRef Expression
1 creverse 12527 . 2  class reverse
2 vs . . 3  setvar  s
3 cvv 3106 . . 3  class  _V
4 vx . . . 4  setvar  x
5 cc0 9481 . . . . 5  class  0
62cv 1397 . . . . . 6  class  s
7 chash 12390 . . . . . 6  class  #
86, 7cfv 5570 . . . . 5  class  ( # `  s )
9 cfzo 11799 . . . . 5  class ..^
105, 8, 9co 6270 . . . 4  class  ( 0..^ ( # `  s
) )
11 c1 9482 . . . . . . 7  class  1
12 cmin 9796 . . . . . . 7  class  -
138, 11, 12co 6270 . . . . . 6  class  ( (
# `  s )  -  1 )
144cv 1397 . . . . . 6  class  x
1513, 14, 12co 6270 . . . . 5  class  ( ( ( # `  s
)  -  1 )  -  x )
1615, 6cfv 5570 . . . 4  class  ( s `
 ( ( (
# `  s )  -  1 )  -  x ) )
174, 10, 16cmpt 4497 . . 3  class  ( x  e.  ( 0..^ (
# `  s )
)  |->  ( s `  ( ( ( # `  s )  -  1 )  -  x ) ) )
182, 3, 17cmpt 4497 . 2  class  ( s  e.  _V  |->  ( x  e.  ( 0..^ (
# `  s )
)  |->  ( s `  ( ( ( # `  s )  -  1 )  -  x ) ) ) )
191, 18wceq 1398 1  wff reverse  =  ( s  e.  _V  |->  ( x  e.  ( 0..^ ( # `  s
) )  |->  ( s `
 ( ( (
# `  s )  -  1 )  -  x ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  revval  12728
  Copyright terms: Public domain W3C validator