MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-preset Structured version   Unicode version

Definition df-preset 15773
Description: Define the class of preordered sets (presets). A preset is a set equipped with a transitive and reflexive relation.

Preorders are a natural generalization of order for sets where there is a well-defined ordering, but it in some sense "fails to capture the whole story", in that there may be pairs of elements which are indistinguishable under the order. Two elements which are not equal but are less-or-equal to each other behave the same under all order operations and may be thought of as "tied".

A preorder can naturally be strengthened by requiring that there are no ties, resulting in a partial order, or by stating that all comparable pairs of elements are tied, resulting in an equivalence relation. Every preorder naturally factors into these two types; the tied relation on a preorder is an equivalence relation and the quotient under that relation is a partial order. (Contributed by FL, 17-Nov-2014.) (Revised by Stefan O'Rear, 31-Jan-2015.)

Assertion
Ref Expression
df-preset  |-  Preset  =  {
f  |  [. ( Base `  f )  / 
b ]. [. ( le
`  f )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) }
Distinct variable group:    f, b, r, x, y, z

Detailed syntax breakdown of Definition df-preset
StepHypRef Expression
1 cpreset 15771 . 2  class  Preset
2 vx . . . . . . . . . . 11  setvar  x
32cv 1404 . . . . . . . . . 10  class  x
4 vr . . . . . . . . . . 11  setvar  r
54cv 1404 . . . . . . . . . 10  class  r
63, 3, 5wbr 4394 . . . . . . . . 9  wff  x r x
7 vy . . . . . . . . . . . . 13  setvar  y
87cv 1404 . . . . . . . . . . . 12  class  y
93, 8, 5wbr 4394 . . . . . . . . . . 11  wff  x r y
10 vz . . . . . . . . . . . . 13  setvar  z
1110cv 1404 . . . . . . . . . . . 12  class  z
128, 11, 5wbr 4394 . . . . . . . . . . 11  wff  y r z
139, 12wa 367 . . . . . . . . . 10  wff  ( x r y  /\  y
r z )
143, 11, 5wbr 4394 . . . . . . . . . 10  wff  x r z
1513, 14wi 4 . . . . . . . . 9  wff  ( ( x r y  /\  y r z )  ->  x r z )
166, 15wa 367 . . . . . . . 8  wff  ( x r x  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
17 vb . . . . . . . . 9  setvar  b
1817cv 1404 . . . . . . . 8  class  b
1916, 10, 18wral 2753 . . . . . . 7  wff  A. z  e.  b  ( x
r x  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
2019, 7, 18wral 2753 . . . . . 6  wff  A. y  e.  b  A. z  e.  b  ( x
r x  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
2120, 2, 18wral 2753 . . . . 5  wff  A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x
r x  /\  (
( x r y  /\  y r z )  ->  x r
z ) )
22 vf . . . . . . 7  setvar  f
2322cv 1404 . . . . . 6  class  f
24 cple 14808 . . . . . 6  class  le
2523, 24cfv 5525 . . . . 5  class  ( le
`  f )
2621, 4, 25wsbc 3276 . . . 4  wff  [. ( le `  f )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) )
27 cbs 14733 . . . . 5  class  Base
2823, 27cfv 5525 . . . 4  class  ( Base `  f )
2926, 17, 28wsbc 3276 . . 3  wff  [. ( Base `  f )  / 
b ]. [. ( le
`  f )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) )
3029, 22cab 2387 . 2  class  { f  |  [. ( Base `  f )  /  b ]. [. ( le `  f )  /  r ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y
r z )  ->  x r z ) ) }
311, 30wceq 1405 1  wff  Preset  =  {
f  |  [. ( Base `  f )  / 
b ]. [. ( le
`  f )  / 
r ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x r x  /\  ( ( x r y  /\  y r z )  ->  x r z ) ) }
Colors of variables: wff setvar class
This definition is referenced by:  isprs  15775
  Copyright terms: Public domain W3C validator