Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-pprod Structured version   Unicode version

Definition df-pprod 29657
Description: Define the parallel product of two classes. Membership in this class is defined by pprodss4v 29687 and brpprod 29688. (Contributed by Scott Fenton, 11-Apr-2014.)
Assertion
Ref Expression
df-pprod  |- pprod ( A ,  B )  =  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )

Detailed syntax breakdown of Definition df-pprod
StepHypRef Expression
1 cA . . 3  class  A
2 cB . . 3  class  B
31, 2cpprod 29633 . 2  class pprod ( A ,  B )
4 c1st 6697 . . . . 5  class  1st
5 cvv 3034 . . . . . 6  class  _V
65, 5cxp 4911 . . . . 5  class  ( _V 
X.  _V )
74, 6cres 4915 . . . 4  class  ( 1st  |`  ( _V  X.  _V ) )
81, 7ccom 4917 . . 3  class  ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )
9 c2nd 6698 . . . . 5  class  2nd
109, 6cres 4915 . . . 4  class  ( 2nd  |`  ( _V  X.  _V ) )
112, 10ccom 4917 . . 3  class  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) )
128, 11ctxp 29632 . 2  class  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) )  (x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
133, 12wceq 1399 1  wff pprod ( A ,  B )  =  ( ( A  o.  ( 1st  |`  ( _V  X.  _V ) ) ) 
(x)  ( B  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  dfpprod2  29685  pprodss4v  29687  brpprod  29688
  Copyright terms: Public domain W3C validator