Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-plr Structured version   Unicode version

Definition df-plr 9484
 Description: Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 9547, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-plr
Distinct variable group:   ,,,,,,

Detailed syntax breakdown of Definition df-plr
StepHypRef Expression
1 cplr 9296 . 2
2 vx . . . . . . 7
32cv 1437 . . . . . 6
4 cnr 9292 . . . . . 6
53, 4wcel 1869 . . . . 5
6 vy . . . . . . 7
76cv 1437 . . . . . 6
87, 4wcel 1869 . . . . 5
95, 8wa 371 . . . 4
10 vw . . . . . . . . . . . . . 14
1110cv 1437 . . . . . . . . . . . . 13
12 vv . . . . . . . . . . . . . 14
1312cv 1437 . . . . . . . . . . . . 13
1411, 13cop 4003 . . . . . . . . . . . 12
15 cer 9291 . . . . . . . . . . . 12
1614, 15cec 7367 . . . . . . . . . . 11
173, 16wceq 1438 . . . . . . . . . 10
18 vu . . . . . . . . . . . . . 14
1918cv 1437 . . . . . . . . . . . . 13
20 vf . . . . . . . . . . . . . 14
2120cv 1437 . . . . . . . . . . . . 13
2219, 21cop 4003 . . . . . . . . . . . 12
2322, 15cec 7367 . . . . . . . . . . 11
247, 23wceq 1438 . . . . . . . . . 10
2517, 24wa 371 . . . . . . . . 9
26 vz . . . . . . . . . . 11
2726cv 1437 . . . . . . . . . 10
28 cpp 9288 . . . . . . . . . . . . 13
2911, 19, 28co 6303 . . . . . . . . . . . 12
3013, 21, 28co 6303 . . . . . . . . . . . 12
3129, 30cop 4003 . . . . . . . . . . 11
3231, 15cec 7367 . . . . . . . . . 10
3327, 32wceq 1438 . . . . . . . . 9
3425, 33wa 371 . . . . . . . 8
3534, 20wex 1660 . . . . . . 7
3635, 18wex 1660 . . . . . 6
3736, 12wex 1660 . . . . 5
3837, 10wex 1660 . . . 4
399, 38wa 371 . . 3
4039, 2, 6, 26coprab 6304 . 2
411, 40wceq 1438 1
 Colors of variables: wff setvar class This definition is referenced by:  addsrpr  9501  dmaddsr  9511
 Copyright terms: Public domain W3C validator