Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-phtpc Structured version   Unicode version

Definition df-phtpc 21470
 Description: Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
df-phtpc
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-phtpc
StepHypRef Expression
1 cphtpc 21447 . 2
2 vx . . 3
3 ctop 19372 . . 3
4 vf . . . . . . . 8
54cv 1382 . . . . . . 7
6 vg . . . . . . . 8
76cv 1382 . . . . . . 7
85, 7cpr 4016 . . . . . 6
9 cii 21357 . . . . . . 7
102cv 1382 . . . . . . 7
11 ccn 19703 . . . . . . 7
129, 10, 11co 6281 . . . . . 6
138, 12wss 3461 . . . . 5
14 cphtpy 21446 . . . . . . . 8
1510, 14cfv 5578 . . . . . . 7
165, 7, 15co 6281 . . . . . 6
17 c0 3770 . . . . . 6
1816, 17wne 2638 . . . . 5
1913, 18wa 369 . . . 4
2019, 4, 6copab 4494 . . 3
212, 3, 20cmpt 4495 . 2
221, 21wceq 1383 1
 Colors of variables: wff setvar class This definition is referenced by:  phtpcrel  21471  isphtpc  21472
 Copyright terms: Public domain W3C validator