![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-perf | Structured version Visualization version Unicode version |
Description: Define the class of all perfect spaces. A perfect space is one for which every point in the set is a limit point of the whole space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
df-perf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cperf 20200 |
. 2
![]() | |
2 | vj |
. . . . . . 7
![]() ![]() | |
3 | 2 | cv 1454 |
. . . . . 6
![]() ![]() |
4 | 3 | cuni 4212 |
. . . . 5
![]() ![]() ![]() |
5 | clp 20199 |
. . . . . 6
![]() ![]() | |
6 | 3, 5 | cfv 5601 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | cfv 5601 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7, 4 | wceq 1455 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | ctop 19966 |
. . 3
![]() ![]() | |
10 | 8, 2, 9 | crab 2753 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 10 | wceq 1455 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isperf 20216 |
Copyright terms: Public domain | W3C validator |