MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oprab Unicode version

Definition df-oprab 6044
Description: Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally  x,  y, and  z are distinct, although the definition doesn't strictly require it. See df-ov 6043 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of the most common operation class builder is given by ovmpt2 6168. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
df-oprab  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Distinct variable groups:    x, w    y, w    z, w    ph, w
Allowed substitution hints:    ph( x, y, z)

Detailed syntax breakdown of Definition df-oprab
StepHypRef Expression
1 wph . . 3  wff  ph
2 vx . . 3  set  x
3 vy . . 3  set  y
4 vz . . 3  set  z
51, 2, 3, 4coprab 6041 . 2  class  { <. <.
x ,  y >. ,  z >.  |  ph }
6 vw . . . . . . . . 9  set  w
76cv 1648 . . . . . . . 8  class  w
82cv 1648 . . . . . . . . . 10  class  x
93cv 1648 . . . . . . . . . 10  class  y
108, 9cop 3777 . . . . . . . . 9  class  <. x ,  y >.
114cv 1648 . . . . . . . . 9  class  z
1210, 11cop 3777 . . . . . . . 8  class  <. <. x ,  y >. ,  z
>.
137, 12wceq 1649 . . . . . . 7  wff  w  = 
<. <. x ,  y
>. ,  z >.
1413, 1wa 359 . . . . . 6  wff  ( w  =  <. <. x ,  y
>. ,  z >.  /\ 
ph )
1514, 4wex 1547 . . . . 5  wff  E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
1615, 3wex 1547 . . . 4  wff  E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
1716, 2wex 1547 . . 3  wff  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph )
1817, 6cab 2390 . 2  class  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
195, 18wceq 1649 1  wff  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
Colors of variables: wff set class
This definition is referenced by:  oprabid  6064  dfoprab2  6080  nfoprab1  6082  nfoprab2  6083  nfoprab3  6084  nfoprab  6085  oprabbid  6086  ssoprab2  6089  cbvoprab2  6104  eloprabga  6119  oprabrexex2  6148  eloprabi  6372  mpt20  6386  dftpos3  6456  colinearex  25898
  Copyright terms: Public domain W3C validator