Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ofs Structured version   Visualization version   Unicode version

Definition df-ofs 30800
Description: The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 25024). See brofs 30822 and 5segofs 30823 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.)
Assertion
Ref Expression
df-ofs  |-  OuterFiveSeg  =  { <. p ,  q >.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) ) }
Distinct variable group:    a, b, c, d, x, y, z, w, p, q, n

Detailed syntax breakdown of Definition df-ofs
StepHypRef Expression
1 cofs 30799 . 2  class  OuterFiveSeg
2 vp . . . . . . . . . . . . . . 15  setvar  p
32cv 1454 . . . . . . . . . . . . . 14  class  p
4 va . . . . . . . . . . . . . . . . 17  setvar  a
54cv 1454 . . . . . . . . . . . . . . . 16  class  a
6 vb . . . . . . . . . . . . . . . . 17  setvar  b
76cv 1454 . . . . . . . . . . . . . . . 16  class  b
85, 7cop 3986 . . . . . . . . . . . . . . 15  class  <. a ,  b >.
9 vc . . . . . . . . . . . . . . . . 17  setvar  c
109cv 1454 . . . . . . . . . . . . . . . 16  class  c
11 vd . . . . . . . . . . . . . . . . 17  setvar  d
1211cv 1454 . . . . . . . . . . . . . . . 16  class  d
1310, 12cop 3986 . . . . . . . . . . . . . . 15  class  <. c ,  d >.
148, 13cop 3986 . . . . . . . . . . . . . 14  class  <. <. a ,  b >. ,  <. c ,  d >. >.
153, 14wceq 1455 . . . . . . . . . . . . 13  wff  p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.
16 vq . . . . . . . . . . . . . . 15  setvar  q
1716cv 1454 . . . . . . . . . . . . . 14  class  q
18 vx . . . . . . . . . . . . . . . . 17  setvar  x
1918cv 1454 . . . . . . . . . . . . . . . 16  class  x
20 vy . . . . . . . . . . . . . . . . 17  setvar  y
2120cv 1454 . . . . . . . . . . . . . . . 16  class  y
2219, 21cop 3986 . . . . . . . . . . . . . . 15  class  <. x ,  y >.
23 vz . . . . . . . . . . . . . . . . 17  setvar  z
2423cv 1454 . . . . . . . . . . . . . . . 16  class  z
25 vw . . . . . . . . . . . . . . . . 17  setvar  w
2625cv 1454 . . . . . . . . . . . . . . . 16  class  w
2724, 26cop 3986 . . . . . . . . . . . . . . 15  class  <. z ,  w >.
2822, 27cop 3986 . . . . . . . . . . . . . 14  class  <. <. x ,  y >. ,  <. z ,  w >. >.
2917, 28wceq 1455 . . . . . . . . . . . . 13  wff  q  = 
<. <. x ,  y
>. ,  <. z ,  w >. >.
305, 10cop 3986 . . . . . . . . . . . . . . . 16  class  <. a ,  c >.
31 cbtwn 24975 . . . . . . . . . . . . . . . 16  class  Btwn
327, 30, 31wbr 4418 . . . . . . . . . . . . . . 15  wff  b  Btwn  <.
a ,  c >.
3319, 24cop 3986 . . . . . . . . . . . . . . . 16  class  <. x ,  z >.
3421, 33, 31wbr 4418 . . . . . . . . . . . . . . 15  wff  y  Btwn  <.
x ,  z >.
3532, 34wa 375 . . . . . . . . . . . . . 14  wff  ( b 
Btwn  <. a ,  c
>.  /\  y  Btwn  <. x ,  z >. )
36 ccgr 24976 . . . . . . . . . . . . . . . 16  class Cgr
378, 22, 36wbr 4418 . . . . . . . . . . . . . . 15  wff  <. a ,  b >.Cgr <. x ,  y >.
387, 10cop 3986 . . . . . . . . . . . . . . . 16  class  <. b ,  c >.
3921, 24cop 3986 . . . . . . . . . . . . . . . 16  class  <. y ,  z >.
4038, 39, 36wbr 4418 . . . . . . . . . . . . . . 15  wff  <. b ,  c >.Cgr <. y ,  z >.
4137, 40wa 375 . . . . . . . . . . . . . 14  wff  ( <.
a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )
425, 12cop 3986 . . . . . . . . . . . . . . . 16  class  <. a ,  d >.
4319, 26cop 3986 . . . . . . . . . . . . . . . 16  class  <. x ,  w >.
4442, 43, 36wbr 4418 . . . . . . . . . . . . . . 15  wff  <. a ,  d >.Cgr <. x ,  w >.
457, 12cop 3986 . . . . . . . . . . . . . . . 16  class  <. b ,  d >.
4621, 26cop 3986 . . . . . . . . . . . . . . . 16  class  <. y ,  w >.
4745, 46, 36wbr 4418 . . . . . . . . . . . . . . 15  wff  <. b ,  d >.Cgr <. y ,  w >.
4844, 47wa 375 . . . . . . . . . . . . . 14  wff  ( <.
a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. )
4935, 41, 48w3a 991 . . . . . . . . . . . . 13  wff  ( ( b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) )
5015, 29, 49w3a 991 . . . . . . . . . . . 12  wff  ( p  =  <. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
51 vn . . . . . . . . . . . . . 14  setvar  n
5251cv 1454 . . . . . . . . . . . . 13  class  n
53 cee 24974 . . . . . . . . . . . . 13  class  EE
5452, 53cfv 5605 . . . . . . . . . . . 12  class  ( EE
`  n )
5550, 25, 54wrex 2750 . . . . . . . . . . 11  wff  E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
5655, 23, 54wrex 2750 . . . . . . . . . 10  wff  E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
5756, 20, 54wrex 2750 . . . . . . . . 9  wff  E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
5857, 18, 54wrex 2750 . . . . . . . 8  wff  E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
5958, 11, 54wrex 2750 . . . . . . 7  wff  E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
6059, 9, 54wrex 2750 . . . . . 6  wff  E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
6160, 6, 54wrex 2750 . . . . 5  wff  E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
6261, 4, 54wrex 2750 . . . 4  wff  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
63 cn 10642 . . . 4  class  NN
6462, 51, 63wrex 2750 . . 3  wff  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) )
6564, 2, 16copab 4476 . 2  class  { <. p ,  q >.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) ) }
661, 65wceq 1455 1  wff  OuterFiveSeg  =  { <. p ,  q >.  |  E. n  e.  NN  E. a  e.  ( EE `  n
) E. b  e.  ( EE `  n
) E. c  e.  ( EE `  n
) E. d  e.  ( EE `  n
) E. x  e.  ( EE `  n
) E. y  e.  ( EE `  n
) E. z  e.  ( EE `  n
) E. w  e.  ( EE `  n
) ( p  = 
<. <. a ,  b
>. ,  <. c ,  d >. >.  /\  q  =  <. <. x ,  y
>. ,  <. z ,  w >. >.  /\  ( (
b  Btwn  <. a ,  c >.  /\  y  Btwn  <. x ,  z
>. )  /\  ( <. a ,  b >.Cgr <. x ,  y >.  /\  <. b ,  c
>.Cgr <. y ,  z
>. )  /\  ( <. a ,  d >.Cgr <. x ,  w >.  /\ 
<. b ,  d >.Cgr <. y ,  w >. ) ) ) }
Colors of variables: wff setvar class
This definition is referenced by:  brofs  30822
  Copyright terms: Public domain W3C validator