HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-oc Unicode version

Definition df-oc 22707
Description: Define orthogonal complement of a subset (usually a subspace) of Hilbert space. The orthogonal complement is the set of all vectors orthogonal to all vectors in the subset. See ocval 22735 and chocvali 22754 for its value. Textbooks usually denote this unary operation with the symbol  _|_ as a small superscript, although Mittelstaedt uses the symbol as a prefix operation. Here we define a function (prefix operation)  _|_ rather than introducing a new syntactical form. This lets us take advantage of the theorems about functions that we already have proved under set theory. Definition of [Mittelstaedt] p. 9. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
Assertion
Ref Expression
df-oc  |-  _|_  =  ( x  e.  ~P ~H  |->  { y  e. 
~H  |  A. z  e.  x  ( y  .ih  z )  =  0 } )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-oc
StepHypRef Expression
1 cort 22386 . 2  class  _|_
2 vx . . 3  set  x
3 chil 22375 . . . 4  class  ~H
43cpw 3759 . . 3  class  ~P ~H
5 vy . . . . . . . 8  set  y
65cv 1648 . . . . . . 7  class  y
7 vz . . . . . . . 8  set  z
87cv 1648 . . . . . . 7  class  z
9 csp 22378 . . . . . . 7  class  .ih
106, 8, 9co 6040 . . . . . 6  class  ( y 
.ih  z )
11 cc0 8946 . . . . . 6  class  0
1210, 11wceq 1649 . . . . 5  wff  ( y 
.ih  z )  =  0
132cv 1648 . . . . 5  class  x
1412, 7, 13wral 2666 . . . 4  wff  A. z  e.  x  ( y  .ih  z )  =  0
1514, 5, 3crab 2670 . . 3  class  { y  e.  ~H  |  A. z  e.  x  (
y  .ih  z )  =  0 }
162, 4, 15cmpt 4226 . 2  class  ( x  e.  ~P ~H  |->  { y  e.  ~H  |  A. z  e.  x  ( y  .ih  z
)  =  0 } )
171, 16wceq 1649 1  wff  _|_  =  ( x  e.  ~P ~H  |->  { y  e. 
~H  |  A. z  e.  x  ( y  .ih  z )  =  0 } )
Colors of variables: wff set class
This definition is referenced by:  ocval  22735
  Copyright terms: Public domain W3C validator