Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Structured version   Visualization version   Unicode version

Definition df-nfc 2601
 Description: Define the not-free predicate for classes. This is read " is not free in ". Not-free means that the value of cannot affect the value of , e.g., any occurrence of in is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1676 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3
2 cA . . 3
31, 2wnfc 2599 . 2
4 vy . . . . . 6
54cv 1451 . . . . 5
65, 2wcel 1904 . . . 4
76, 1wnf 1675 . . 3
87, 4wal 1450 . 2
93, 8wb 189 1
 Colors of variables: wff setvar class This definition is referenced by:  nfci  2602  nfcr  2604  nfcd  2607  nfceqdf  2608  nfnfc1  2615  nfnfc  2621  nfnfcALT  2622  drnfc1  2629  drnfc2  2630  dfnfc2  4208  nfnid  4629  bj-nfnfc  31530  bj-nfcf  31595
 Copyright terms: Public domain W3C validator