Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mpr Structured version   Unicode version

Definition df-mpr 9339
 Description: Define pre-multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers df-c 9402, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
df-mpr
Distinct variable group:   ,,,,,,

Detailed syntax breakdown of Definition df-mpr
StepHypRef Expression
1 cmpr 9146 . 2
2 vx . . . . . . 7
32cv 1369 . . . . . 6
4 cnp 9140 . . . . . . 7
54, 4cxp 4949 . . . . . 6
63, 5wcel 1758 . . . . 5
7 vy . . . . . . 7
87cv 1369 . . . . . 6
98, 5wcel 1758 . . . . 5
106, 9wa 369 . . . 4
11 vw . . . . . . . . . . . . 13
1211cv 1369 . . . . . . . . . . . 12
13 vv . . . . . . . . . . . . 13
1413cv 1369 . . . . . . . . . . . 12
1512, 14cop 3994 . . . . . . . . . . 11
163, 15wceq 1370 . . . . . . . . . 10
17 vu . . . . . . . . . . . . 13
1817cv 1369 . . . . . . . . . . . 12
19 vf . . . . . . . . . . . . 13
2019cv 1369 . . . . . . . . . . . 12
2118, 20cop 3994 . . . . . . . . . . 11
228, 21wceq 1370 . . . . . . . . . 10
2316, 22wa 369 . . . . . . . . 9
24 vz . . . . . . . . . . 11
2524cv 1369 . . . . . . . . . 10
26 cmp 9143 . . . . . . . . . . . . 13
2712, 18, 26co 6203 . . . . . . . . . . . 12
2814, 20, 26co 6203 . . . . . . . . . . . 12
29 cpp 9142 . . . . . . . . . . . 12
3027, 28, 29co 6203 . . . . . . . . . . 11
3112, 20, 26co 6203 . . . . . . . . . . . 12
3214, 18, 26co 6203 . . . . . . . . . . . 12
3331, 32, 29co 6203 . . . . . . . . . . 11
3430, 33cop 3994 . . . . . . . . . 10
3525, 34wceq 1370 . . . . . . . . 9
3623, 35wa 369 . . . . . . . 8
3736, 19wex 1587 . . . . . . 7
3837, 17wex 1587 . . . . . 6
3938, 13wex 1587 . . . . 5
4039, 11wex 1587 . . . 4
4110, 40wa 369 . . 3
4241, 2, 7, 24coprab 6204 . 2
431, 42wceq 1370 1
 Colors of variables: wff setvar class This definition is referenced by:  mulsrpr  9357
 Copyright terms: Public domain W3C validator