MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mndo Structured version   Unicode version

Definition df-mndo 25002
Description: A monoid is a semi-group with an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Assertion
Ref Expression
df-mndo  |- MndOp  =  (
SemiGrp  i^i  ExId  )

Detailed syntax breakdown of Definition df-mndo
StepHypRef Expression
1 cmndo 25001 . 2  class MndOp
2 csem 24994 . . 3  class  SemiGrp
3 cexid 24978 . . 3  class  ExId
42, 3cin 3468 . 2  class  ( SemiGrp  i^i 
ExId  )
51, 4wceq 1374 1  wff MndOp  =  (
SemiGrp  i^i  ExId  )
Colors of variables: wff setvar class
This definition is referenced by:  mndoissmgrp  25003  mndoisexid  25004  ismndo  25007
  Copyright terms: Public domain W3C validator