Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mgp Structured version   Visualization version   Unicode version

Definition df-mgp 17802
 Description: Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and unitgrp 17973 shows that we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" (ringmgp 17864) or "the multiplicative identity" in terms of the identity of a monoid (df-1r 9504). (Contributed by Mario Carneiro, 21-Dec-2014.)
Assertion
Ref Expression
df-mgp mulGrp sSet

Detailed syntax breakdown of Definition df-mgp
StepHypRef Expression
1 cmgp 17801 . 2 mulGrp
2 vw . . 3
3 cvv 3031 . . 3
42cv 1451 . . . 4
5 cnx 15196 . . . . . 6
6 cplusg 15268 . . . . . 6
75, 6cfv 5589 . . . . 5
8 cmulr 15269 . . . . . 6
94, 8cfv 5589 . . . . 5
107, 9cop 3965 . . . 4
11 csts 15197 . . . 4 sSet
124, 10, 11co 6308 . . 3 sSet
132, 3, 12cmpt 4454 . 2 sSet
141, 13wceq 1452 1 mulGrp sSet
 Colors of variables: wff setvar class This definition is referenced by:  fnmgp  17803  mgpval  17804
 Copyright terms: Public domain W3C validator