Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-linds Structured version   Unicode version

Definition df-linds 19134
 Description: An independent set is a set which is independent as a family. See also islinds3 19161 and islinds4 19162. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
df-linds LIndS LIndF
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-linds
StepHypRef Expression
1 clinds 19132 . 2 LIndS
2 vw . . 3
3 cvv 3059 . . 3
4 cid 4733 . . . . . 6
5 vs . . . . . . 7
65cv 1404 . . . . . 6
74, 6cres 4825 . . . . 5
82cv 1404 . . . . 5
9 clindf 19131 . . . . 5 LIndF
107, 8, 9wbr 4395 . . . 4 LIndF
11 cbs 14841 . . . . . 6
128, 11cfv 5569 . . . . 5
1312cpw 3955 . . . 4
1410, 5, 13crab 2758 . . 3 LIndF
152, 3, 14cmpt 4453 . 2 LIndF
161, 15wceq 1405 1 LIndS LIndF
 Colors of variables: wff setvar class This definition is referenced by:  islinds  19136
 Copyright terms: Public domain W3C validator