Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Unicode version

Definition df-lim 4546
 Description: Define the limit ordinal predicate, which is true for a non-empty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 4597, dflim3 4786, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3
21wlim 4542 . 2
31word 4540 . . 3
4 c0 3588 . . . 4
51, 4wne 2567 . . 3
61cuni 3975 . . . 4
71, 6wceq 1649 . . 3
83, 5, 7w3a 936 . 2
92, 8wb 177 1
 Colors of variables: wff set class This definition is referenced by:  limeq  4553  dflim2  4597  limord  4600  limuni  4601  unizlim  4657  limon  4775  dflim3  4786  nnsuc  4821  onfununi  6562  abianfplem  6674  dfrdg2  25366  ellimits  25664
 Copyright terms: Public domain W3C validator