Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lgam Structured version   Unicode version

Definition df-lgam 23817
 Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to because the branch cuts are placed differently (we do have , though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers , where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
df-lgam
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-lgam
StepHypRef Expression
1 clgam 23814 . 2
2 vz . . 3
3 cc 9536 . . . 4
4 cz 10937 . . . . 5
5 cn 10609 . . . . 5
64, 5cdif 3439 . . . 4
73, 6cdif 3439 . . 3
82cv 1436 . . . . . . 7
9 vm . . . . . . . . . . 11
109cv 1436 . . . . . . . . . 10
11 c1 9539 . . . . . . . . . 10
12 caddc 9541 . . . . . . . . . 10
1310, 11, 12co 6305 . . . . . . . . 9
14 cdiv 10268 . . . . . . . . 9
1513, 10, 14co 6305 . . . . . . . 8
16 clog 23377 . . . . . . . 8
1715, 16cfv 5601 . . . . . . 7
18 cmul 9543 . . . . . . 7
198, 17, 18co 6305 . . . . . 6
208, 10, 14co 6305 . . . . . . . 8
2120, 11, 12co 6305 . . . . . . 7
2221, 16cfv 5601 . . . . . 6
23 cmin 9859 . . . . . 6
2419, 22, 23co 6305 . . . . 5
255, 24, 9csu 13730 . . . 4
268, 16cfv 5601 . . . 4
2725, 26, 23co 6305 . . 3
282, 7, 27cmpt 4484 . 2
291, 28wceq 1437 1
 Colors of variables: wff setvar class This definition is referenced by:  lgamgulm2  23834  lgamf  23840  iprodgam  30173
 Copyright terms: Public domain W3C validator