Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ipf Structured version   Visualization version   Unicode version

Definition df-ipf 19194
 Description: Define group addition function. Usually we will use directly instead of , and they have the same behavior in most cases. The main advantage of is that it is a guaranteed function (mndplusf 16555), while only has closure (mndcl 16545). (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
df-ipf
Distinct variable group:   ,,

Detailed syntax breakdown of Definition df-ipf
StepHypRef Expression
1 cipf 19192 . 2
2 vg . . 3
3 cvv 3045 . . 3
4 vx . . . 4
5 vy . . . 4
62cv 1443 . . . . 5
7 cbs 15121 . . . . 5
86, 7cfv 5582 . . . 4
94cv 1443 . . . . 5
105cv 1443 . . . . 5
11 cip 15195 . . . . . 6
126, 11cfv 5582 . . . . 5
139, 10, 12co 6290 . . . 4
144, 5, 8, 8, 13cmpt2 6292 . . 3
152, 3, 14cmpt 4461 . 2
161, 15wceq 1444 1
 Colors of variables: wff setvar class This definition is referenced by:  ipffval  19215
 Copyright terms: Public domain W3C validator