MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-idom Structured version   Unicode version

Definition df-idom 17464
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
df-idom  |- IDomn  =  (
CRing  i^i Domn )

Detailed syntax breakdown of Definition df-idom
StepHypRef Expression
1 cidom 17460 . 2  class IDomn
2 ccrg 16754 . . 3  class  CRing
3 cdomn 17459 . . 3  class Domn
42, 3cin 3427 . 2  class  ( CRing  i^i Domn
)
51, 4wceq 1370 1  wff IDomn  =  (
CRing  i^i Domn )
Colors of variables: wff setvar class
This definition is referenced by:  isidom  17484
  Copyright terms: Public domain W3C validator