HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-homul Structured version   Unicode version

Definition df-homul 25288
Description: Define the scalar product with a Hilbert space operator. Definition of [Beran] p. 111. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-homul  |-  .op  =  ( f  e.  CC ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e.  ~H  |->  ( f  .h  ( g `
 x ) ) ) )
Distinct variable group:    f, g, x

Detailed syntax breakdown of Definition df-homul
StepHypRef Expression
1 chot 24494 . 2  class  .op
2 vf . . 3  setvar  f
3 vg . . 3  setvar  g
4 cc 9392 . . 3  class  CC
5 chil 24474 . . . 4  class  ~H
6 cmap 7325 . . . 4  class  ^m
75, 5, 6co 6201 . . 3  class  ( ~H 
^m  ~H )
8 vx . . . 4  setvar  x
92cv 1369 . . . . 5  class  f
108cv 1369 . . . . . 6  class  x
113cv 1369 . . . . . 6  class  g
1210, 11cfv 5527 . . . . 5  class  ( g `
 x )
13 csm 24476 . . . . 5  class  .h
149, 12, 13co 6201 . . . 4  class  ( f  .h  ( g `  x ) )
158, 5, 14cmpt 4459 . . 3  class  ( x  e.  ~H  |->  ( f  .h  ( g `  x ) ) )
162, 3, 4, 7, 15cmpt2 6203 . 2  class  ( f  e.  CC ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e.  ~H  |->  ( f  .h  ( g `  x ) ) ) )
171, 16wceq 1370 1  wff  .op  =  ( f  e.  CC ,  g  e.  ( ~H  ^m  ~H )  |->  ( x  e.  ~H  |->  ( f  .h  ( g `
 x ) ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  hommval  25293
  Copyright terms: Public domain W3C validator