![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > df-hba | Structured version Visualization version Unicode version |
Description: Define base set of
Hilbert space, for use if we want to develop Hilbert
space independently from the axioms (see comments in ax-hilex 26701). Note
that ![]() |
Ref | Expression |
---|---|
df-hba |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chil 26621 |
. 2
![]() ![]() | |
2 | cva 26622 |
. . . . 5
![]() ![]() | |
3 | csm 26623 |
. . . . 5
![]() ![]() | |
4 | 2, 3 | cop 3986 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
5 | cno 26625 |
. . . 4
![]() ![]() | |
6 | 4, 5 | cop 3986 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | cba 26254 |
. . 3
![]() ![]() | |
8 | 6, 7 | cfv 5601 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 1, 8 | wceq 1455 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: axhilex-zf 26683 axhfvadd-zf 26684 axhvcom-zf 26685 axhvass-zf 26686 axhv0cl-zf 26687 axhvaddid-zf 26688 axhfvmul-zf 26689 axhvmulid-zf 26690 axhvmulass-zf 26691 axhvdistr1-zf 26692 axhvdistr2-zf 26693 axhvmul0-zf 26694 axhfi-zf 26695 axhis1-zf 26696 axhis2-zf 26697 axhis3-zf 26698 axhis4-zf 26699 axhcompl-zf 26700 bcsiHIL 26882 hlimadd 26895 hhssabloi 26962 pjhthlem2 27094 nmopsetretHIL 27566 nmopub2tHIL 27612 hmopbdoptHIL 27690 |
Copyright terms: Public domain | W3C validator |