HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-h0op Structured version   Unicode version

Definition df-h0op 25087
Description: Define the Hilbert space zero operator. See df0op2 25091 for alternate definition. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-h0op  |-  0hop  =  ( proj h `  0H )

Detailed syntax breakdown of Definition df-h0op
StepHypRef Expression
1 ch0o 24280 . 2  class  0hop
2 c0h 24272 . . 3  class  0H
3 cpjh 24274 . . 3  class  proj h
42, 3cfv 5415 . 2  class  ( proj h `  0H )
51, 4wceq 1364 1  wff  0hop  =  ( proj h `  0H )
Colors of variables: wff setvar class
This definition is referenced by:  ho0val  25089  ho0f  25090  pjbdlni  25488
  Copyright terms: Public domain W3C validator