MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fld Structured version   Unicode version

Definition df-fld 25617
Description: Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.)
Assertion
Ref Expression
df-fld  |-  Fld  =  (
DivRingOps 
i^i  Com2 )

Detailed syntax breakdown of Definition df-fld
StepHypRef Expression
1 cfld 25616 . 2  class  Fld
2 cdrng 25608 . . 3  class  DivRingOps
3 ccm2 25613 . . 3  class  Com2
42, 3cin 3460 . 2  class  ( DivRingOps  i^i  Com2 )
51, 4wceq 1398 1  wff  Fld  =  (
DivRingOps 
i^i  Com2 )
Colors of variables: wff setvar class
This definition is referenced by:  flddivrng  25618  fldcrng  30644  isfld2  30645
  Copyright terms: Public domain W3C validator