MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-en Structured version   Unicode version

Definition df-en 7518
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define  ~~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 7526. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Distinct variable group:    x, y, f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 7514 . 2  class  ~~
2 vx . . . . . 6  setvar  x
32cv 1436 . . . . 5  class  x
4 vy . . . . . 6  setvar  y
54cv 1436 . . . . 5  class  y
6 vf . . . . . 6  setvar  f
76cv 1436 . . . . 5  class  f
83, 5, 7wf1o 5536 . . . 4  wff  f : x -1-1-onto-> y
98, 6wex 1657 . . 3  wff  E. f 
f : x -1-1-onto-> y
109, 2, 4copab 4417 . 2  class  { <. x ,  y >.  |  E. f  f : x -1-1-onto-> y }
111, 10wceq 1437 1  wff  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
Colors of variables: wff setvar class
This definition is referenced by:  relen  7522  bren  7526  enssdom  7541
  Copyright terms: Public domain W3C validator