MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ee Structured version   Unicode version

Definition df-ee 23105
Description: Define the Euclidean space generator. For details, see elee 23108. (Contributed by Scott Fenton, 3-Jun-2013.)
Assertion
Ref Expression
df-ee  |-  EE  =  ( n  e.  NN  |->  ( RR  ^m  (
1 ... n ) ) )

Detailed syntax breakdown of Definition df-ee
StepHypRef Expression
1 cee 23102 . 2  class  EE
2 vn . . 3  setvar  n
3 cn 10314 . . 3  class  NN
4 cr 9273 . . . 4  class  RR
5 c1 9275 . . . . 5  class  1
62cv 1368 . . . . 5  class  n
7 cfz 11429 . . . . 5  class  ...
85, 6, 7co 6086 . . . 4  class  ( 1 ... n )
9 cmap 7206 . . . 4  class  ^m
104, 8, 9co 6086 . . 3  class  ( RR 
^m  ( 1 ... n ) )
112, 3, 10cmpt 4345 . 2  class  ( n  e.  NN  |->  ( RR 
^m  ( 1 ... n ) ) )
121, 11wceq 1369 1  wff  EE  =  ( n  e.  NN  |->  ( RR  ^m  (
1 ... n ) ) )
Colors of variables: wff setvar class
This definition is referenced by:  elee  23108  eleenn  23110
  Copyright terms: Public domain W3C validator