MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ec Structured version   Visualization version   Unicode version

Definition df-ec 7352
Description: Define the  R-coset of  A. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of  A modulo  R when  R is an equivalence relation (i.e. when  Er  R; see dfer2 7351). In this case,  A is a representative (member) of the equivalence class  [ A ] R, which contains all sets that are equivalent to  A. Definition of [Enderton] p. 57 uses the notation  [ A ] (subscript)  R, although we simply follow the brackets by  R since we don't have subscripted expressions. For an alternate definition, see dfec2 7353. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-ec  |-  [ A ] R  =  ( R " { A }
)

Detailed syntax breakdown of Definition df-ec
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2cec 7348 . 2  class  [ A ] R
41csn 3936 . . 3  class  { A }
52, 4cima 4815 . 2  class  ( R
" { A }
)
63, 5wceq 1448 1  wff  [ A ] R  =  ( R " { A }
)
Colors of variables: wff setvar class
This definition is referenced by:  dfec2  7353  ecexg  7354  ecexr  7355  eceq1  7386  eceq2  7388  elecg  7389  ecss  7392  ecidsn  7399  uniqs  7410  ecqs  7414  ecinxp  7425
  Copyright terms: Public domain W3C validator