MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dgr Structured version   Unicode version

Definition df-dgr 21662
Description: Define the degree of a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
df-dgr  |- deg  =  ( f  e.  (Poly `  CC )  |->  sup (
( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  ) )

Detailed syntax breakdown of Definition df-dgr
StepHypRef Expression
1 cdgr 21658 . 2  class deg
2 vf . . 3  setvar  f
3 cc 9283 . . . 4  class  CC
4 cply 21655 . . . 4  class Poly
53, 4cfv 5421 . . 3  class  (Poly `  CC )
62cv 1368 . . . . . . 7  class  f
7 ccoe 21657 . . . . . . 7  class coeff
86, 7cfv 5421 . . . . . 6  class  (coeff `  f )
98ccnv 4842 . . . . 5  class  `' (coeff `  f )
10 cc0 9285 . . . . . . 7  class  0
1110csn 3880 . . . . . 6  class  { 0 }
123, 11cdif 3328 . . . . 5  class  ( CC 
\  { 0 } )
139, 12cima 4846 . . . 4  class  ( `' (coeff `  f ) " ( CC  \  { 0 } ) )
14 cn0 10582 . . . 4  class  NN0
15 clt 9421 . . . 4  class  <
1613, 14, 15csup 7693 . . 3  class  sup (
( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  )
172, 5, 16cmpt 4353 . 2  class  ( f  e.  (Poly `  CC )  |->  sup ( ( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  ) )
181, 17wceq 1369 1  wff deg  =  ( f  e.  (Poly `  CC )  |->  sup (
( `' (coeff `  f ) " ( CC  \  { 0 } ) ) ,  NN0 ,  <  ) )
Colors of variables: wff setvar class
This definition is referenced by:  dgrval  21699
  Copyright terms: Public domain W3C validator