Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cycl Structured version   Unicode version

Definition df-cycl 24917
 Description: Define the set of all (simple) cycles (in an undirected graph). According to Wikipedia ("Cycle (graph theory)", https://en.wikipedia.org/wiki/Cycle_(graph_theory), 3-Oct-2017): "A simple cycle may be defined either as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex," According to Bollobas: "If a walk W = x0 x1 ... x(l) is such that l >= 3, x0=x(l), and the vertices x(i), 0 < i < l, are distinct from each other and x0, then W is said to be a cycle.", see Definition of [Bollobas] p. 5. However, since a walk consisting of distinct vertices (except the first and the last vertex) is a path, a cycle can be defined as path whose first and last vertices coincide. So a cycle is represented by the following sequence: p(0) e(f(1)) p(1) ... p(n-1) e(f(n)) p(n)=p(0). (Contributed by Alexander van der Vekens, 3-Oct-2017.)
Assertion
Ref Expression
df-cycl Cycles Paths
Distinct variable group:   ,,,

Detailed syntax breakdown of Definition df-cycl
StepHypRef Expression
1 ccycl 24911 . 2 Cycles
2 vv . . 3
3 ve . . 3
4 cvv 3058 . . 3
5 vf . . . . . . 7
65cv 1404 . . . . . 6
7 vp . . . . . . 7
87cv 1404 . . . . . 6
92cv 1404 . . . . . . 7
103cv 1404 . . . . . . 7
11 cpath 24904 . . . . . . 7 Paths
129, 10, 11co 6277 . . . . . 6 Paths
136, 8, 12wbr 4394 . . . . 5 Paths
14 cc0 9521 . . . . . . 7
1514, 8cfv 5568 . . . . . 6
16 chash 12450 . . . . . . . 8
176, 16cfv 5568 . . . . . . 7
1817, 8cfv 5568 . . . . . 6
1915, 18wceq 1405 . . . . 5
2013, 19wa 367 . . . 4 Paths
2120, 5, 7copab 4451 . . 3 Paths
222, 3, 4, 4, 21cmpt2 6279 . 2 Paths
231, 22wceq 1405 1 Cycles Paths
 Colors of variables: wff setvar class This definition is referenced by:  cycls  25027  cyclispth  25033  cycliscrct  25034  cyclnspth  25035
 Copyright terms: Public domain W3C validator