Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cofu Structured version   Unicode version

Definition df-cofu 14766
 Description: Define the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017.)
Assertion
Ref Expression
df-cofu func
Distinct variable group:   ,,,

Detailed syntax breakdown of Definition df-cofu
StepHypRef Expression
1 ccofu 14762 . 2 func
2 vg . . 3
3 vf . . 3
4 cvv 2970 . . 3
52cv 1363 . . . . . 6
6 c1st 6574 . . . . . 6
75, 6cfv 5415 . . . . 5
83cv 1363 . . . . . 6
98, 6cfv 5415 . . . . 5
107, 9ccom 4840 . . . 4
11 vx . . . . 5
12 vy . . . . 5
13 c2nd 6575 . . . . . . . 8
148, 13cfv 5415 . . . . . . 7
1514cdm 4836 . . . . . 6
1615cdm 4836 . . . . 5
1711cv 1363 . . . . . . . 8
1817, 9cfv 5415 . . . . . . 7
1912cv 1363 . . . . . . . 8
2019, 9cfv 5415 . . . . . . 7
215, 13cfv 5415 . . . . . . 7
2218, 20, 21co 6090 . . . . . 6
2317, 19, 14co 6090 . . . . . 6
2422, 23ccom 4840 . . . . 5
2511, 12, 16, 16, 24cmpt2 6092 . . . 4
2610, 25cop 3880 . . 3
272, 3, 4, 4, 26cmpt2 6092 . 2
281, 27wceq 1364 1 func
 Colors of variables: wff setvar class This definition is referenced by:  cofuval  14788
 Copyright terms: Public domain W3C validator