![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cncf | Structured version Visualization version Unicode version |
Description: Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.) |
Ref | Expression |
---|---|
df-cncf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccncf 21957 |
. 2
![]() ![]() | |
2 | va |
. . 3
![]() ![]() | |
3 | vb |
. . 3
![]() ![]() | |
4 | cc 9563 |
. . . 4
![]() ![]() | |
5 | 4 | cpw 3963 |
. . 3
![]() ![]() ![]() |
6 | vx |
. . . . . . . . . . . . 13
![]() ![]() | |
7 | 6 | cv 1454 |
. . . . . . . . . . . 12
![]() ![]() |
8 | vy |
. . . . . . . . . . . . 13
![]() ![]() | |
9 | 8 | cv 1454 |
. . . . . . . . . . . 12
![]() ![]() |
10 | cmin 9886 |
. . . . . . . . . . . 12
![]() ![]() | |
11 | 7, 9, 10 | co 6315 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
12 | cabs 13346 |
. . . . . . . . . . 11
![]() ![]() | |
13 | 11, 12 | cfv 5601 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | vd |
. . . . . . . . . . 11
![]() ![]() | |
15 | 14 | cv 1454 |
. . . . . . . . . 10
![]() ![]() |
16 | clt 9701 |
. . . . . . . . . 10
![]() ![]() | |
17 | 13, 15, 16 | wbr 4416 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | vf |
. . . . . . . . . . . . . 14
![]() ![]() | |
19 | 18 | cv 1454 |
. . . . . . . . . . . . 13
![]() ![]() |
20 | 7, 19 | cfv 5601 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 9, 19 | cfv 5601 |
. . . . . . . . . . . 12
![]() ![]() ![]() ![]() ![]() ![]() |
22 | 20, 21, 10 | co 6315 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22, 12 | cfv 5601 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | ve |
. . . . . . . . . . 11
![]() ![]() | |
25 | 24 | cv 1454 |
. . . . . . . . . 10
![]() ![]() |
26 | 23, 25, 16 | wbr 4416 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 17, 26 | wi 4 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 2 | cv 1454 |
. . . . . . . 8
![]() ![]() |
29 | 27, 8, 28 | wral 2749 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | crp 11331 |
. . . . . . 7
![]() ![]() | |
31 | 29, 14, 30 | wrex 2750 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31, 24, 30 | wral 2749 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32, 6, 28 | wral 2749 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 3 | cv 1454 |
. . . . 5
![]() ![]() |
35 | cmap 7498 |
. . . . 5
![]() ![]() | |
36 | 34, 28, 35 | co 6315 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
37 | 33, 18, 36 | crab 2753 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 2, 3, 5, 5, 37 | cmpt2 6317 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 1, 38 | wceq 1455 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: cncfval 21969 cncfrss 21972 cncfrss2 21973 |
Copyright terms: Public domain | W3C validator |