MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cat Structured version   Unicode version

Definition df-cat 14708
Description: A category is an abstraction of a structure (a group, a topology, an order...) Category theory consists in finding new formulation of the concepts associated to those structures (product, substructure...) using morphisms instead of the belonging relation. That trick has the interesting property that heterogeneous structures like topologies or groups for instance become comparable. (Note: in category theory morphisms are also called arrows.) (Contributed by FL, 24-Oct-2007.) (Revised by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-cat  |-  Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. ( Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
Distinct variable group:    b, c, f, g, h, k, o, w, x, y, z

Detailed syntax breakdown of Definition df-cat
StepHypRef Expression
1 ccat 14704 . 2  class  Cat
2 vg . . . . . . . . . . . . . . 15  setvar  g
32cv 1369 . . . . . . . . . . . . . 14  class  g
4 vf . . . . . . . . . . . . . . 15  setvar  f
54cv 1369 . . . . . . . . . . . . . 14  class  f
6 vy . . . . . . . . . . . . . . . . 17  setvar  y
76cv 1369 . . . . . . . . . . . . . . . 16  class  y
8 vx . . . . . . . . . . . . . . . . 17  setvar  x
98cv 1369 . . . . . . . . . . . . . . . 16  class  x
107, 9cop 3981 . . . . . . . . . . . . . . 15  class  <. y ,  x >.
11 vo . . . . . . . . . . . . . . . 16  setvar  o
1211cv 1369 . . . . . . . . . . . . . . 15  class  o
1310, 9, 12co 6190 . . . . . . . . . . . . . 14  class  ( <.
y ,  x >. o x )
143, 5, 13co 6190 . . . . . . . . . . . . 13  class  ( g ( <. y ,  x >. o x ) f )
1514, 5wceq 1370 . . . . . . . . . . . 12  wff  ( g ( <. y ,  x >. o x ) f )  =  f
16 vh . . . . . . . . . . . . . 14  setvar  h
1716cv 1369 . . . . . . . . . . . . 13  class  h
187, 9, 17co 6190 . . . . . . . . . . . 12  class  ( y h x )
1915, 4, 18wral 2795 . . . . . . . . . . 11  wff  A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f
209, 9cop 3981 . . . . . . . . . . . . . . 15  class  <. x ,  x >.
2120, 7, 12co 6190 . . . . . . . . . . . . . 14  class  ( <.
x ,  x >. o y )
225, 3, 21co 6190 . . . . . . . . . . . . 13  class  ( f ( <. x ,  x >. o y ) g )
2322, 5wceq 1370 . . . . . . . . . . . 12  wff  ( f ( <. x ,  x >. o y ) g )  =  f
249, 7, 17co 6190 . . . . . . . . . . . 12  class  ( x h y )
2523, 4, 24wral 2795 . . . . . . . . . . 11  wff  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f
2619, 25wa 369 . . . . . . . . . 10  wff  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f )
27 vb . . . . . . . . . . 11  setvar  b
2827cv 1369 . . . . . . . . . 10  class  b
2926, 6, 28wral 2795 . . . . . . . . 9  wff  A. y  e.  b  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f )
309, 9, 17co 6190 . . . . . . . . 9  class  ( x h x )
3129, 2, 30wrex 2796 . . . . . . . 8  wff  E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )
329, 7cop 3981 . . . . . . . . . . . . . . . 16  class  <. x ,  y >.
33 vz . . . . . . . . . . . . . . . . 17  setvar  z
3433cv 1369 . . . . . . . . . . . . . . . 16  class  z
3532, 34, 12co 6190 . . . . . . . . . . . . . . 15  class  ( <.
x ,  y >.
o z )
363, 5, 35co 6190 . . . . . . . . . . . . . 14  class  ( g ( <. x ,  y
>. o z ) f )
379, 34, 17co 6190 . . . . . . . . . . . . . 14  class  ( x h z )
3836, 37wcel 1758 . . . . . . . . . . . . 13  wff  ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )
39 vk . . . . . . . . . . . . . . . . . . 19  setvar  k
4039cv 1369 . . . . . . . . . . . . . . . . . 18  class  k
417, 34cop 3981 . . . . . . . . . . . . . . . . . . 19  class  <. y ,  z >.
42 vw . . . . . . . . . . . . . . . . . . . 20  setvar  w
4342cv 1369 . . . . . . . . . . . . . . . . . . 19  class  w
4441, 43, 12co 6190 . . . . . . . . . . . . . . . . . 18  class  ( <.
y ,  z >.
o w )
4540, 3, 44co 6190 . . . . . . . . . . . . . . . . 17  class  ( k ( <. y ,  z
>. o w ) g )
4632, 43, 12co 6190 . . . . . . . . . . . . . . . . 17  class  ( <.
x ,  y >.
o w )
4745, 5, 46co 6190 . . . . . . . . . . . . . . . 16  class  ( ( k ( <. y ,  z >. o
w ) g ) ( <. x ,  y
>. o w ) f )
489, 34cop 3981 . . . . . . . . . . . . . . . . . 18  class  <. x ,  z >.
4948, 43, 12co 6190 . . . . . . . . . . . . . . . . 17  class  ( <.
x ,  z >.
o w )
5040, 36, 49co 6190 . . . . . . . . . . . . . . . 16  class  ( k ( <. x ,  z
>. o w ) ( g ( <. x ,  y >. o
z ) f ) )
5147, 50wceq 1370 . . . . . . . . . . . . . . 15  wff  ( ( k ( <. y ,  z >. o
w ) g ) ( <. x ,  y
>. o w ) f )  =  ( k ( <. x ,  z
>. o w ) ( g ( <. x ,  y >. o
z ) f ) )
5234, 43, 17co 6190 . . . . . . . . . . . . . . 15  class  ( z h w )
5351, 39, 52wral 2795 . . . . . . . . . . . . . 14  wff  A. k  e.  ( z h w ) ( ( k ( <. y ,  z
>. o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) )
5453, 42, 28wral 2795 . . . . . . . . . . . . 13  wff  A. w  e.  b  A. k  e.  ( z h w ) ( ( k ( <. y ,  z
>. o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) )
5538, 54wa 369 . . . . . . . . . . . 12  wff  ( ( g ( <. x ,  y >. o
z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
567, 34, 17co 6190 . . . . . . . . . . . 12  class  ( y h z )
5755, 2, 56wral 2795 . . . . . . . . . . 11  wff  A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
5857, 4, 24wral 2795 . . . . . . . . . 10  wff  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
5958, 33, 28wral 2795 . . . . . . . . 9  wff  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
6059, 6, 28wral 2795 . . . . . . . 8  wff  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) )
6131, 60wa 369 . . . . . . 7  wff  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
6261, 8, 28wral 2795 . . . . . 6  wff  A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
63 vc . . . . . . . 8  setvar  c
6463cv 1369 . . . . . . 7  class  c
65 cco 14352 . . . . . . 7  class comp
6664, 65cfv 5516 . . . . . 6  class  (comp `  c )
6762, 11, 66wsbc 3284 . . . . 5  wff  [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
68 chom 14351 . . . . . 6  class  Hom
6964, 68cfv 5516 . . . . 5  class  ( Hom  `  c )
7067, 16, 69wsbc 3284 . . . 4  wff  [. ( Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
71 cbs 14276 . . . . 5  class  Base
7264, 71cfv 5516 . . . 4  class  ( Base `  c )
7370, 27, 72wsbc 3284 . . 3  wff  [. ( Base `  c )  / 
b ]. [. ( Hom  `  c )  /  h ]. [. (comp `  c
)  /  o ]. A. x  e.  b 
( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) )
7473, 63cab 2436 . 2  class  { c  |  [. ( Base `  c )  /  b ]. [. ( Hom  `  c
)  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
751, 74wceq 1370 1  wff  Cat  =  { c  |  [. ( Base `  c )  /  b ]. [. ( Hom  `  c )  /  h ]. [. (comp `  c )  /  o ]. A. x  e.  b  ( E. g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  /\  A. y  e.  b  A. z  e.  b  A. f  e.  ( x h y ) A. g  e.  ( y h z ) ( ( g ( <. x ,  y
>. o z ) f )  e.  ( x h z )  /\  A. w  e.  b  A. k  e.  ( z
h w ) ( ( k ( <.
y ,  z >.
o w ) g ) ( <. x ,  y >. o
w ) f )  =  ( k (
<. x ,  z >.
o w ) ( g ( <. x ,  y >. o
z ) f ) ) ) ) }
Colors of variables: wff setvar class
This definition is referenced by:  iscat  14712
  Copyright terms: Public domain W3C validator