MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-c Structured version   Unicode version

Definition df-c 9280
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 9307. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-c  |-  CC  =  ( R.  X.  R. )

Detailed syntax breakdown of Definition df-c
StepHypRef Expression
1 cc 9272 . 2  class  CC
2 cnr 9026 . . 3  class  R.
32, 2cxp 4833 . 2  class  ( R. 
X.  R. )
41, 3wceq 1369 1  wff  CC  =  ( R.  X.  R. )
Colors of variables: wff setvar class
This definition is referenced by:  opelcn  9288  0ncn  9292  addcnsr  9294  mulcnsr  9295  dfcnqs  9301  axaddf  9304  axmulf  9305  axcnex  9306  axresscn  9307  axcnre  9323  wuncn  9329
  Copyright terms: Public domain W3C validator