MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-c Structured version   Unicode version

Definition df-c 9487
Description: Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 9514. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
df-c  |-  CC  =  ( R.  X.  R. )

Detailed syntax breakdown of Definition df-c
StepHypRef Expression
1 cc 9479 . 2  class  CC
2 cnr 9232 . . 3  class  R.
32, 2cxp 4986 . 2  class  ( R. 
X.  R. )
41, 3wceq 1398 1  wff  CC  =  ( R.  X.  R. )
Colors of variables: wff setvar class
This definition is referenced by:  opelcn  9495  0ncn  9499  addcnsr  9501  mulcnsr  9502  dfcnqs  9508  axaddf  9511  axmulf  9512  axcnex  9513  axresscn  9514  axcnre  9530  wuncn  9536
  Copyright terms: Public domain W3C validator