![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > df-2idl | Structured version Unicode version |
Description: Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.) |
Ref | Expression |
---|---|
df-2idl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c2idl 17428 |
. 2
![]() | |
2 | vr |
. . 3
![]() ![]() | |
3 | cvv 3071 |
. . 3
![]() ![]() | |
4 | 2 | cv 1369 |
. . . . 5
![]() ![]() |
5 | clidl 17366 |
. . . . 5
![]() | |
6 | 4, 5 | cfv 5519 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
7 | coppr 16829 |
. . . . . 6
![]() | |
8 | 4, 7 | cfv 5519 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
9 | 8, 5 | cfv 5519 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 6, 9 | cin 3428 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 2, 3, 10 | cmpt 4451 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 11 | wceq 1370 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: 2idlval 17430 |
Copyright terms: Public domain | W3C validator |