MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-1st Structured version   Unicode version

Definition df-1st 6807
Description: Define a function that extracts the first member, or abscissa, of an ordered pair. Theorem op1st 6815 proves that it does this. For example,  ( 1st ` 
<. 3 ,  4
>. )  =  3. Equivalent to Definition 5.13 (i) of [Monk1] p. 52 (compare op1sta 5338 and op1stb 4692). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
df-1st  |-  1st  =  ( x  e.  _V  |->  U.
dom  { x } )

Detailed syntax breakdown of Definition df-1st
StepHypRef Expression
1 c1st 6805 . 2  class  1st
2 vx . . 3  setvar  x
3 cvv 3087 . . 3  class  _V
42cv 1436 . . . . . 6  class  x
54csn 4002 . . . . 5  class  { x }
65cdm 4854 . . . 4  class  dom  {
x }
76cuni 4222 . . 3  class  U. dom  { x }
82, 3, 7cmpt 4484 . 2  class  ( x  e.  _V  |->  U. dom  { x } )
91, 8wceq 1437 1  wff  1st  =  ( x  e.  _V  |->  U.
dom  { x } )
Colors of variables: wff setvar class
This definition is referenced by:  1stval  6809  fo1st  6827  f1stres  6829
  Copyright terms: Public domain W3C validator