Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangsn Structured version   Unicode version

Theorem derangsn 28591
Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
Assertion
Ref Expression
derangsn  |-  ( A  e.  V  ->  ( D `  { A } )  =  0 )
Distinct variable groups:    x, f,
y, A    f, V
Allowed substitution hints:    D( x, y, f)    V( x, y)

Proof of Theorem derangsn
StepHypRef Expression
1 snfi 7598 . . . 4  |-  { A }  e.  Fin
2 derang.d . . . . 5  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
32derangval 28588 . . . 4  |-  ( { A }  e.  Fin  ->  ( D `  { A } )  =  (
# `  { f  |  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) } ) )
41, 3ax-mp 5 . . 3  |-  ( D `
 { A }
)  =  ( # `  { f  |  ( f : { A }
-1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) } )
5 f1of 5806 . . . . . . . . . 10  |-  ( f : { A } -1-1-onto-> { A }  ->  f : { A } --> { A } )
65adantr 465 . . . . . . . . 9  |-  ( ( f : { A }
-1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
)  ->  f : { A } --> { A } )
7 snidg 4040 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  { A } )
8 ffvelrn 6014 . . . . . . . . 9  |-  ( ( f : { A }
--> { A }  /\  A  e.  { A } )  ->  (
f `  A )  e.  { A } )
96, 7, 8syl2anr 478 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) )  ->  (
f `  A )  e.  { A } )
10 simpr 461 . . . . . . . . . 10  |-  ( ( f : { A }
-1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
)  ->  A. y  e.  { A }  (
f `  y )  =/=  y )
11 fveq2 5856 . . . . . . . . . . . 12  |-  ( y  =  A  ->  (
f `  y )  =  ( f `  A ) )
12 id 22 . . . . . . . . . . . 12  |-  ( y  =  A  ->  y  =  A )
1311, 12neeq12d 2722 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( f `  y
)  =/=  y  <->  ( f `  A )  =/=  A
) )
1413rspcva 3194 . . . . . . . . . 10  |-  ( ( A  e.  { A }  /\  A. y  e. 
{ A }  (
f `  y )  =/=  y )  ->  (
f `  A )  =/=  A )
157, 10, 14syl2an 477 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) )  ->  (
f `  A )  =/=  A )
16 elsni 4039 . . . . . . . . . 10  |-  ( ( f `  A )  e.  { A }  ->  ( f `  A
)  =  A )
1716necon3ai 2671 . . . . . . . . 9  |-  ( ( f `  A )  =/=  A  ->  -.  ( f `  A
)  e.  { A } )
1815, 17syl 16 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) )  ->  -.  ( f `  A
)  e.  { A } )
199, 18pm2.21dd 174 . . . . . . 7  |-  ( ( A  e.  V  /\  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) )  ->  f  e.  (/) )
2019ex 434 . . . . . 6  |-  ( A  e.  V  ->  (
( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
)  ->  f  e.  (/) ) )
2120abssdv 3559 . . . . 5  |-  ( A  e.  V  ->  { f  |  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) }  C_  (/) )
22 ss0 3802 . . . . 5  |-  ( { f  |  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  (
f `  y )  =/=  y ) }  C_  (/) 
->  { f  |  ( f : { A }
-1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) }  =  (/) )
2321, 22syl 16 . . . 4  |-  ( A  e.  V  ->  { f  |  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) }  =  (/) )
2423fveq2d 5860 . . 3  |-  ( A  e.  V  ->  ( # `
 { f  |  ( f : { A } -1-1-onto-> { A }  /\  A. y  e.  { A }  ( f `  y )  =/=  y
) } )  =  ( # `  (/) ) )
254, 24syl5eq 2496 . 2  |-  ( A  e.  V  ->  ( D `  { A } )  =  (
# `  (/) ) )
26 hash0 12418 . 2  |-  ( # `  (/) )  =  0
2725, 26syl6eq 2500 1  |-  ( A  e.  V  ->  ( D `  { A } )  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804   {cab 2428    =/= wne 2638   A.wral 2793    C_ wss 3461   (/)c0 3770   {csn 4014    |-> cmpt 4495   -->wf 5574   -1-1-onto->wf1o 5577   ` cfv 5578   Fincfn 7518   0cc0 9495   #chash 12386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10544  df-n0 10803  df-z 10872  df-uz 11092  df-fz 11683  df-hash 12387
This theorem is referenced by:  subfac1  28599
  Copyright terms: Public domain W3C validator