Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangenlem Structured version   Unicode version

Theorem derangenlem 28488
Description: One half of derangen 28489. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
Assertion
Ref Expression
derangenlem  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Distinct variable groups:    x, f,
y, A    B, f, x, y
Allowed substitution hints:    D( x, y, f)

Proof of Theorem derangenlem
Dummy variables  g  h  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  ~~  B )
2 bren 7527 . . . . 5  |-  ( A 
~~  B  <->  E. s 
s : A -1-1-onto-> B )
31, 2sylib 196 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  E. s  s : A -1-1-onto-> B )
4 deranglem 28483 . . . . 5  |-  ( B  e.  Fin  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )
54adantl 466 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) }  e.  Fin )
6 f1oco 5828 . . . . . . . . . . . 12  |-  ( ( s : A -1-1-onto-> B  /\  g : A -1-1-onto-> A )  ->  (
s  o.  g ) : A -1-1-onto-> B )
76ad2ant2lr 747 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
8 f1ocnv 5818 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  `' s : B -1-1-onto-> A )
98ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B -1-1-onto-> A )
10 f1oco 5828 . . . . . . . . . . 11  |-  ( ( ( s  o.  g
) : A -1-1-onto-> B  /\  `' s : B -1-1-onto-> A
)  ->  ( (
s  o.  g )  o.  `' s ) : B -1-1-onto-> B )
117, 9, 10syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B )
12 coass 5516 . . . . . . . . . . . . . . 15  |-  ( ( s  o.  g )  o.  `' s )  =  ( s  o.  ( g  o.  `' s ) )
1312fveq1i 5857 . . . . . . . . . . . . . 14  |-  ( ( ( s  o.  g
)  o.  `' s ) `  z )  =  ( ( s  o.  ( g  o.  `' s ) ) `
 z )
14 simprl 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  g : A -1-1-onto-> A )
15 f1oco 5828 . . . . . . . . . . . . . . . . 17  |-  ( ( g : A -1-1-onto-> A  /\  `' s : B -1-1-onto-> A
)  ->  ( g  o.  `' s ) : B -1-1-onto-> A )
1614, 9, 15syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B -1-1-onto-> A )
17 f1of 5806 . . . . . . . . . . . . . . . 16  |-  ( ( g  o.  `' s ) : B -1-1-onto-> A  -> 
( g  o.  `' s ) : B --> A )
1816, 17syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
g  o.  `' s ) : B --> A )
19 fvco3 5935 . . . . . . . . . . . . . . 15  |-  ( ( ( g  o.  `' s ) : B --> A  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2018, 19sylan 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s  o.  ( g  o.  `' s ) ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
2113, 20syl5eq 2496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =  ( s `  ( ( g  o.  `' s ) `  z ) ) )
22 f1of 5806 . . . . . . . . . . . . . . . . . 18  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B --> A )
239, 22syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  `' s : B --> A )
24 fvco3 5935 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s : B --> A  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
2523, 24sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =  ( g `  ( `' s `  z
) ) )
2623ffvelrnda 6016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  e.  A )
27 simplrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  A. y  e.  A  ( g `  y )  =/=  y
)
28 fveq2 5856 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
( g `  y
)  =  ( g `
 ( `' s `
 z ) ) )
29 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( `' s `
 z )  -> 
y  =  ( `' s `  z ) )
3028, 29neeq12d 2722 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( `' s `
 z )  -> 
( ( g `  y )  =/=  y  <->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) ) )
3130rspcv 3192 . . . . . . . . . . . . . . . . 17  |-  ( ( `' s `  z
)  e.  A  -> 
( A. y  e.  A  ( g `  y )  =/=  y  ->  ( g `  ( `' s `  z
) )  =/=  ( `' s `  z
) ) )
3226, 27, 31sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( g `  ( `' s `  z ) )  =/=  ( `' s `  z ) )
3325, 32eqnetrd 2736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  =/=  ( `' s `
 z ) )
3433necomd 2714 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( `' s `  z )  =/=  ( ( g  o.  `' s ) `  z ) )
35 simpllr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  s : A
-1-1-onto-> B )
3618ffvelrnda 6016 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
g  o.  `' s ) `  z )  e.  A )
37 f1ocnvfv 6169 . . . . . . . . . . . . . . . 16  |-  ( ( s : A -1-1-onto-> B  /\  ( ( g  o.  `' s ) `  z )  e.  A
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
3835, 36, 37syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
s `  ( (
g  o.  `' s ) `  z ) )  =  z  -> 
( `' s `  z )  =  ( ( g  o.  `' s ) `  z
) ) )
3938necon3d 2667 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( ( `' s `  z
)  =/=  ( ( g  o.  `' s ) `  z )  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z ) )
4034, 39mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( s `  ( ( g  o.  `' s ) `  z ) )  =/=  z )
4121, 40eqnetrd 2736 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B )  /\  (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y ) )  /\  z  e.  B
)  ->  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
4241ralrimiva 2857 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. z  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  z )  =/=  z )
43 fveq2 5856 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( ( s  o.  g )  o.  `' s ) `  z
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
44 id 22 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  z  =  y )
4543, 44neeq12d 2722 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( ( ( s  o.  g )  o.  `' s ) `  z )  =/=  z  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
4645cbvralv 3070 . . . . . . . . . . 11  |-  ( A. z  e.  B  (
( ( s  o.  g )  o.  `' s ) `  z
)  =/=  z  <->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
4742, 46sylib 196 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y )
4811, 47jca 532 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y )  =/=  y
) )
4948ex 434 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  -> 
( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
50 vex 3098 . . . . . . . . 9  |-  g  e. 
_V
51 f1oeq1 5797 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f : A -1-1-onto-> A  <->  g : A
-1-1-onto-> A ) )
52 fveq1 5855 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f `  y )  =  ( g `  y ) )
5352neeq1d 2720 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f `  y
)  =/=  y  <->  ( g `  y )  =/=  y
) )
5453ralbidv 2882 . . . . . . . . . 10  |-  ( f  =  g  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( g `  y )  =/=  y
) )
5551, 54anbi12d 710 . . . . . . . . 9  |-  ( f  =  g  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y ) ) )
5650, 55elab 3232 . . . . . . . 8  |-  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
) )
57 vex 3098 . . . . . . . . . . 11  |-  s  e. 
_V
5857, 50coex 6737 . . . . . . . . . 10  |-  ( s  o.  g )  e. 
_V
5957cnvex 6732 . . . . . . . . . 10  |-  `' s  e.  _V
6058, 59coex 6737 . . . . . . . . 9  |-  ( ( s  o.  g )  o.  `' s )  e.  _V
61 f1oeq1 5797 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f : B -1-1-onto-> B  <->  ( ( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B ) )
62 fveq1 5855 . . . . . . . . . . . 12  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( f `  y
)  =  ( ( ( s  o.  g
)  o.  `' s ) `  y ) )
6362neeq1d 2720 . . . . . . . . . . 11  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f `  y )  =/=  y  <->  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6463ralbidv 2882 . . . . . . . . . 10  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( A. y  e.  B  ( f `  y )  =/=  y  <->  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6561, 64anbi12d 710 . . . . . . . . 9  |-  ( f  =  ( ( s  o.  g )  o.  `' s )  -> 
( ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
)  <->  ( ( ( s  o.  g )  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( (
( s  o.  g
)  o.  `' s ) `  y )  =/=  y ) ) )
6660, 65elab 3232 . . . . . . . 8  |-  ( ( ( s  o.  g
)  o.  `' s )  e.  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  <->  ( (
( s  o.  g
)  o.  `' s ) : B -1-1-onto-> B  /\  A. y  e.  B  ( ( ( s  o.  g )  o.  `' s ) `  y
)  =/=  y ) )
6749, 56, 663imtr4g 270 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ->  ( ( s  o.  g )  o.  `' s )  e. 
{ f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
68 vex 3098 . . . . . . . . . 10  |-  h  e. 
_V
69 f1oeq1 5797 . . . . . . . . . . 11  |-  ( f  =  h  ->  (
f : A -1-1-onto-> A  <->  h : A
-1-1-onto-> A ) )
70 fveq1 5855 . . . . . . . . . . . . 13  |-  ( f  =  h  ->  (
f `  y )  =  ( h `  y ) )
7170neeq1d 2720 . . . . . . . . . . . 12  |-  ( f  =  h  ->  (
( f `  y
)  =/=  y  <->  ( h `  y )  =/=  y
) )
7271ralbidv 2882 . . . . . . . . . . 11  |-  ( f  =  h  ->  ( A. y  e.  A  ( f `  y
)  =/=  y  <->  A. y  e.  A  ( h `  y )  =/=  y
) )
7369, 72anbi12d 710 . . . . . . . . . 10  |-  ( f  =  h  ->  (
( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y )  <-> 
( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )
7468, 73elab 3232 . . . . . . . . 9  |-  ( h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y
)  =/=  y ) }  <->  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )
7556, 74anbi12i 697 . . . . . . . 8  |-  ( ( g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <->  ( ( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y
)  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) ) )
768ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -1-1-onto-> A )
77 f1ofo 5813 . . . . . . . . . . . 12  |-  ( `' s : B -1-1-onto-> A  ->  `' s : B -onto-> A )
7876, 77syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  `' s : B -onto-> A )
797adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g ) : A -1-1-onto-> B )
80 f1ofn 5807 . . . . . . . . . . . 12  |-  ( ( s  o.  g ) : A -1-1-onto-> B  ->  ( s  o.  g )  Fn  A
)
8179, 80syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  g )  Fn  A )
82 simplr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-onto-> B )
83 simprrl 765 . . . . . . . . . . . . 13  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A -1-1-onto-> A )
84 f1oco 5828 . . . . . . . . . . . . 13  |-  ( ( s : A -1-1-onto-> B  /\  h : A -1-1-onto-> A )  ->  (
s  o.  h ) : A -1-1-onto-> B )
8582, 83, 84syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h ) : A -1-1-onto-> B )
86 f1ofn 5807 . . . . . . . . . . . 12  |-  ( ( s  o.  h ) : A -1-1-onto-> B  ->  ( s  o.  h )  Fn  A
)
8785, 86syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
s  o.  h )  Fn  A )
88 cocan2 6180 . . . . . . . . . . 11  |-  ( ( `' s : B -onto-> A  /\  ( s  o.  g )  Fn  A  /\  ( s  o.  h
)  Fn  A )  ->  ( ( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
8978, 81, 87, 88syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  ( s  o.  g )  =  ( s  o.  h ) ) )
90 f1of1 5805 . . . . . . . . . . . 12  |-  ( s : A -1-1-onto-> B  ->  s : A -1-1-> B )
9190ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  s : A -1-1-> B )
92 simprll 763 . . . . . . . . . . . 12  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A -1-1-onto-> A )
93 f1of 5806 . . . . . . . . . . . 12  |-  ( g : A -1-1-onto-> A  ->  g : A
--> A )
9492, 93syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  g : A --> A )
95 f1of 5806 . . . . . . . . . . . 12  |-  ( h : A -1-1-onto-> A  ->  h : A
--> A )
9683, 95syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  h : A --> A )
97 cocan1 6179 . . . . . . . . . . 11  |-  ( ( s : A -1-1-> B  /\  g : A --> A  /\  h : A --> A )  ->  ( ( s  o.  g )  =  ( s  o.  h
)  <->  g  =  h ) )
9891, 94, 96, 97syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( s  o.  g
)  =  ( s  o.  h )  <->  g  =  h ) )
9989, 98bitrd 253 . . . . . . . . 9  |-  ( ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  /\  ( (
g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y )  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y
)  =/=  y ) ) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) )
10099ex 434 . . . . . . . 8  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
( g : A -1-1-onto-> A  /\  A. y  e.  A  ( g `  y
)  =/=  y )  /\  ( h : A -1-1-onto-> A  /\  A. y  e.  A  ( h `  y )  =/=  y
) )  ->  (
( ( s  o.  g )  o.  `' s )  =  ( ( s  o.  h
)  o.  `' s )  <->  g  =  h ) ) )
10175, 100syl5bi 217 . . . . . . 7  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( (
g  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  /\  h  e.  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  ->  ( (
( s  o.  g
)  o.  `' s )  =  ( ( s  o.  h )  o.  `' s )  <-> 
g  =  h ) ) )
10267, 101dom2d 7558 . . . . . 6  |-  ( ( ( A  ~~  B  /\  B  e.  Fin )  /\  s : A -1-1-onto-> B
)  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
103102ex 434 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( s : A -1-1-onto-> B  ->  ( { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y
)  =/=  y ) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) ) )
104103exlimdv 1711 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( E. s  s : A -1-1-onto-> B  ->  ( {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) ) )
1053, 5, 104mp2d 45 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } )
106 enfii 7739 . . . . . 6  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
107106ancoms 453 . . . . 5  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  A  e.  Fin )
108 deranglem 28483 . . . . 5  |-  ( A  e.  Fin  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  e.  Fin )
109107, 108syl 16 . . . 4  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin )
110 hashdom 12426 . . . 4  |-  ( ( { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) }  e.  Fin  /\  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) }  e.  Fin )  ->  ( ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } )  <_  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
111109, 5, 110syl2anc 661 . . 3  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } )  <->  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) }  ~<_  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
112105, 111mpbird 232 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } )  <_ 
( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
113 derang.d . . . 4  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
114113derangval 28484 . . 3  |-  ( A  e.  Fin  ->  ( D `  A )  =  ( # `  {
f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y
) } ) )
115107, 114syl 16 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  =  ( # `  { f  |  ( f : A -1-1-onto-> A  /\  A. y  e.  A  ( f `  y )  =/=  y ) } ) )
116113derangval 28484 . . 3  |-  ( B  e.  Fin  ->  ( D `  B )  =  ( # `  {
f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y
) } ) )
117116adantl 466 . 2  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  B
)  =  ( # `  { f  |  ( f : B -1-1-onto-> B  /\  A. y  e.  B  ( f `  y )  =/=  y ) } ) )
118112, 115, 1173brtr4d 4467 1  |-  ( ( A  ~~  B  /\  B  e.  Fin )  ->  ( D `  A
)  <_  ( D `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383   E.wex 1599    e. wcel 1804   {cab 2428    =/= wne 2638   A.wral 2793   class class class wbr 4437    |-> cmpt 4495   `'ccnv 4988    o. ccom 4993    Fn wfn 5573   -->wf 5574   -1-1->wf1 5575   -onto->wfo 5576   -1-1-onto->wf1o 5577   ` cfv 5578    ~~ cen 7515    ~<_ cdom 7516   Fincfn 7518    <_ cle 9632   #chash 12384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-n0 10802  df-z 10871  df-uz 11091  df-fz 11682  df-hash 12385
This theorem is referenced by:  derangen  28489
  Copyright terms: Public domain W3C validator