MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  demoivreALT Structured version   Unicode version

Theorem demoivreALT 13793
Description: Alternate proof of demoivre 13792. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
demoivreALT  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )

Proof of Theorem demoivreALT
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6290 . . . . 5  |-  ( x  =  0  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 ) )
2 oveq1 6289 . . . . . . 7  |-  ( x  =  0  ->  (
x  x.  A )  =  ( 0  x.  A ) )
32fveq2d 5868 . . . . . 6  |-  ( x  =  0  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  (
0  x.  A ) ) )
42fveq2d 5868 . . . . . . 7  |-  ( x  =  0  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  (
0  x.  A ) ) )
54oveq2d 6298 . . . . . 6  |-  ( x  =  0  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( 0  x.  A ) ) ) )
63, 5oveq12d 6300 . . . . 5  |-  ( x  =  0  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) )
71, 6eqeq12d 2489 . . . 4  |-  ( x  =  0  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) ) )
87imbi2d 316 . . 3  |-  ( x  =  0  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ 0 )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) ) ) )
9 oveq2 6290 . . . . 5  |-  ( x  =  k  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k ) )
10 oveq1 6289 . . . . . . 7  |-  ( x  =  k  ->  (
x  x.  A )  =  ( k  x.  A ) )
1110fveq2d 5868 . . . . . 6  |-  ( x  =  k  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  (
k  x.  A ) ) )
1210fveq2d 5868 . . . . . . 7  |-  ( x  =  k  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  (
k  x.  A ) ) )
1312oveq2d 6298 . . . . . 6  |-  ( x  =  k  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )
1411, 13oveq12d 6300 . . . . 5  |-  ( x  =  k  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )
159, 14eqeq12d 2489 . . . 4  |-  ( x  =  k  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) )
1615imbi2d 316 . . 3  |-  ( x  =  k  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
17 oveq2 6290 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) ) )
18 oveq1 6289 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
x  x.  A )  =  ( ( k  +  1 )  x.  A ) )
1918fveq2d 5868 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  (
( k  +  1 )  x.  A ) ) )
2018fveq2d 5868 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  (
( k  +  1 )  x.  A ) ) )
2120oveq2d 6298 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) ) )
2219, 21oveq12d 6300 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) )
2317, 22eqeq12d 2489 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) )
2423imbi2d 316 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) ) )
25 oveq2 6290 . . . . 5  |-  ( x  =  N  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
x )  =  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^ N ) )
26 oveq1 6289 . . . . . . 7  |-  ( x  =  N  ->  (
x  x.  A )  =  ( N  x.  A ) )
2726fveq2d 5868 . . . . . 6  |-  ( x  =  N  ->  ( cos `  ( x  x.  A ) )  =  ( cos `  ( N  x.  A )
) )
2826fveq2d 5868 . . . . . . 7  |-  ( x  =  N  ->  ( sin `  ( x  x.  A ) )  =  ( sin `  ( N  x.  A )
) )
2928oveq2d 6298 . . . . . 6  |-  ( x  =  N  ->  (
_i  x.  ( sin `  ( x  x.  A
) ) )  =  ( _i  x.  ( sin `  ( N  x.  A ) ) ) )
3027, 29oveq12d 6300 . . . . 5  |-  ( x  =  N  ->  (
( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )
3125, 30eqeq12d 2489 . . . 4  |-  ( x  =  N  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) )  <->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) ) )
3231imbi2d 316 . . 3  |-  ( x  =  N  ->  (
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ x )  =  ( ( cos `  (
x  x.  A ) )  +  ( _i  x.  ( sin `  (
x  x.  A ) ) ) ) )  <-> 
( A  e.  CC  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) ) ) )
33 coscl 13719 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
34 ax-icn 9547 . . . . . . 7  |-  _i  e.  CC
35 sincl 13718 . . . . . . 7  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
36 mulcl 9572 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( _i  x.  ( sin `  A ) )  e.  CC )
3734, 35, 36sylancr 663 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  A ) )  e.  CC )
38 addcl 9570 . . . . . 6  |-  ( ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC )  -> 
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC )
3933, 37, 38syl2anc 661 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC )
40 exp0 12134 . . . . 5  |-  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC  ->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  1 )
4139, 40syl 16 . . . 4  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  1 )
42 mul02 9753 . . . . . . . 8  |-  ( A  e.  CC  ->  (
0  x.  A )  =  0 )
4342fveq2d 5868 . . . . . . 7  |-  ( A  e.  CC  ->  ( cos `  ( 0  x.  A ) )  =  ( cos `  0
) )
44 cos0 13742 . . . . . . 7  |-  ( cos `  0 )  =  1
4543, 44syl6eq 2524 . . . . . 6  |-  ( A  e.  CC  ->  ( cos `  ( 0  x.  A ) )  =  1 )
4642fveq2d 5868 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( sin `  ( 0  x.  A ) )  =  ( sin `  0
) )
47 sin0 13741 . . . . . . . . 9  |-  ( sin `  0 )  =  0
4846, 47syl6eq 2524 . . . . . . . 8  |-  ( A  e.  CC  ->  ( sin `  ( 0  x.  A ) )  =  0 )
4948oveq2d 6298 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  ( 0  x.  A
) ) )  =  ( _i  x.  0 ) )
5034mul01i 9765 . . . . . . 7  |-  ( _i  x.  0 )  =  0
5149, 50syl6eq 2524 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( sin `  ( 0  x.  A
) ) )  =  0 )
5245, 51oveq12d 6300 . . . . 5  |-  ( A  e.  CC  ->  (
( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) )  =  ( 1  +  0 ) )
53 ax-1cn 9546 . . . . . 6  |-  1  e.  CC
5453addid1i 9762 . . . . 5  |-  ( 1  +  0 )  =  1
5552, 54syl6eq 2524 . . . 4  |-  ( A  e.  CC  ->  (
( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) )  =  1 )
5641, 55eqtr4d 2511 . . 3  |-  ( A  e.  CC  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
0 )  =  ( ( cos `  (
0  x.  A ) )  +  ( _i  x.  ( sin `  (
0  x.  A ) ) ) ) )
57 expp1 12137 . . . . . . . . 9  |-  ( ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) )  e.  CC  /\  k  e. 
NN0 )  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k )  x.  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ) )
5839, 57sylan 471 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
5958ancoms 453 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
6059adantr 465 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
61 oveq1 6289 . . . . . . 7  |-  ( ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  -> 
( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
6261adantl 466 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ) )
63 nn0cn 10801 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
64 mulcl 9572 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  A  e.  CC )  ->  ( k  x.  A
)  e.  CC )
6563, 64sylan 471 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( k  x.  A
)  e.  CC )
66 sinadd 13756 . . . . . . . . . . . 12  |-  ( ( ( k  x.  A
)  e.  CC  /\  A  e.  CC )  ->  ( sin `  (
( k  x.  A
)  +  A ) )  =  ( ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
6765, 66sylancom 667 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
( k  x.  A
)  +  A ) )  =  ( ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
6833adantl 466 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  A
)  e.  CC )
69 sincl 13718 . . . . . . . . . . . . . 14  |-  ( ( k  x.  A )  e.  CC  ->  ( sin `  ( k  x.  A ) )  e.  CC )
7065, 69syl 16 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
k  x.  A ) )  e.  CC )
71 mulcom 9574 . . . . . . . . . . . . 13  |-  ( ( ( cos `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  =  ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) ) )
7268, 70, 71syl2anc 661 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  =  ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) ) )
7372oveq1d 6297 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) )  +  ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) ) )  =  ( ( ( sin `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
74 mulcl 9572 . . . . . . . . . . . . 13  |-  ( ( ( cos `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
7568, 70, 74syl2anc 661 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
76 coscl 13719 . . . . . . . . . . . . . 14  |-  ( ( k  x.  A )  e.  CC  ->  ( cos `  ( k  x.  A ) )  e.  CC )
7765, 76syl 16 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
k  x.  A ) )  e.  CC )
7835adantl 466 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  A
)  e.  CC )
79 mulcl 9572 . . . . . . . . . . . . 13  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC )
8077, 78, 79syl2anc 661 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC )
81 addcom 9761 . . . . . . . . . . . 12  |-  ( ( ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC  /\  ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  (
k  x.  A ) ) )  +  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) )  =  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
8275, 80, 81syl2anc 661 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) )  +  ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
8367, 73, 823eqtr2d 2514 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
8483oveq2d 6298 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  ( sin `  ( ( k  x.  A )  +  A ) ) )  =  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) )
8584oveq2d 6298 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( sin `  (
( k  x.  A
)  +  A ) ) ) )  =  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
86 adddir 9583 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  +  1 )  x.  A )  =  ( ( k  x.  A )  +  ( 1  x.  A
) ) )
87 mulid2 9590 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
8887oveq2d 6298 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( k  x.  A
)  +  ( 1  x.  A ) )  =  ( ( k  x.  A )  +  A ) )
89883ad2ant3 1019 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  x.  A
)  +  ( 1  x.  A ) )  =  ( ( k  x.  A )  +  A ) )
9086, 89eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( k  e.  CC  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  +  1 )  x.  A )  =  ( ( k  x.  A )  +  A ) )
9163, 90syl3an1 1261 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  1  e.  CC  /\  A  e.  CC )  ->  (
( k  +  1 )  x.  A )  =  ( ( k  x.  A )  +  A ) )
9253, 91mp3an2 1312 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( k  +  1 )  x.  A
)  =  ( ( k  x.  A )  +  A ) )
9392fveq2d 5868 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
( k  +  1 )  x.  A ) )  =  ( cos `  ( ( k  x.  A )  +  A
) ) )
9492fveq2d 5868 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( sin `  (
( k  +  1 )  x.  A ) )  =  ( sin `  ( ( k  x.  A )  +  A
) ) )
9594oveq2d 6298 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) )  =  ( _i  x.  ( sin `  ( ( k  x.  A )  +  A ) ) ) )
9693, 95oveq12d 6300 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) )  =  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( sin `  (
( k  x.  A
)  +  A ) ) ) ) )
97 mulcl 9572 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( _i  x.  ( sin `  ( k  x.  A ) ) )  e.  CC )
9834, 97mpan 670 . . . . . . . . . . . . 13  |-  ( ( sin `  ( k  x.  A ) )  e.  CC  ->  (
_i  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
9965, 69, 983syl 20 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  ( sin `  ( k  x.  A ) ) )  e.  CC )
10033, 37jca 532 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  (
( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC ) )
101100adantl 466 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC ) )
102 muladd 9985 . . . . . . . . . . . 12  |-  ( ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( _i  x.  ( sin `  ( k  x.  A ) ) )  e.  CC )  /\  ( ( cos `  A
)  e.  CC  /\  ( _i  x.  ( sin `  A ) )  e.  CC ) )  ->  ( ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )  x.  (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )  +  ( ( ( cos `  ( k  x.  A ) )  x.  ( _i  x.  ( sin `  A ) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
10377, 99, 101, 102syl21anc 1227 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )  +  ( ( ( cos `  ( k  x.  A ) )  x.  ( _i  x.  ( sin `  A ) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
10478, 34jctil 537 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  e.  CC  /\  ( sin `  A
)  e.  CC ) )
10570, 34jctil 537 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  e.  CC  /\  ( sin `  (
k  x.  A ) )  e.  CC ) )
106 mul4 9744 . . . . . . . . . . . . . . 15  |-  ( ( ( _i  e.  CC  /\  ( sin `  A
)  e.  CC )  /\  ( _i  e.  CC  /\  ( sin `  (
k  x.  A ) )  e.  CC ) )  ->  ( (
_i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( ( _i  x.  _i )  x.  ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )
107 ixi 10174 . . . . . . . . . . . . . . . 16  |-  ( _i  x.  _i )  = 
-u 1
108107oveq1i 6292 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  x.  ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( -u
1  x.  ( ( sin `  A )  x.  ( sin `  (
k  x.  A ) ) ) )
109106, 108syl6eq 2524 . . . . . . . . . . . . . 14  |-  ( ( ( _i  e.  CC  /\  ( sin `  A
)  e.  CC )  /\  ( _i  e.  CC  /\  ( sin `  (
k  x.  A ) )  e.  CC ) )  ->  ( (
_i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( -u
1  x.  ( ( sin `  A )  x.  ( sin `  (
k  x.  A ) ) ) ) )
110104, 105, 109syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
111110oveq2d 6298 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  ( ( _i  x.  ( sin `  A
) )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
112111oveq1d 6297 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  ( ( _i  x.  ( sin `  A ) )  x.  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  +  ( ( ( cos `  ( k  x.  A
) )  x.  (
_i  x.  ( sin `  A ) ) )  +  ( ( cos `  A )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( ( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) ) )
113 mul12 9741 . . . . . . . . . . . . . . . 16  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  _i  e.  CC  /\  ( sin `  A )  e.  CC )  ->  (
( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
11434, 113mp3an2 1312 . . . . . . . . . . . . . . 15  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
11577, 78, 114syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  =  ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
116 mul12 9741 . . . . . . . . . . . . . . . 16  |-  ( ( ( cos `  A
)  e.  CC  /\  _i  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  ->  (
( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
11734, 116mp3an2 1312 . . . . . . . . . . . . . . 15  |-  ( ( ( cos `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
11868, 70, 117syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  =  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
119115, 118oveq12d 6300 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  (
_i  x.  ( sin `  A ) ) )  +  ( ( cos `  A )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( _i  x.  ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) ) )  +  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
120 adddi 9577 . . . . . . . . . . . . . . 15  |-  ( ( _i  e.  CC  /\  ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC  /\  ( ( cos `  A )  x.  ( sin `  (
k  x.  A ) ) )  e.  CC )  ->  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )  =  ( ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) )  +  ( _i  x.  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
12134, 120mp3an1 1311 . . . . . . . . . . . . . 14  |-  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  e.  CC  /\  ( ( cos `  A )  x.  ( sin `  (
k  x.  A ) ) )  e.  CC )  ->  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )  =  ( ( _i  x.  (
( cos `  (
k  x.  A ) )  x.  ( sin `  A ) ) )  +  ( _i  x.  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
12280, 75, 121syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( _i  x.  (
( ( cos `  (
k  x.  A ) )  x.  ( sin `  A ) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( _i  x.  ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) ) )  +  ( _i  x.  (
( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
123119, 122eqtr4d 2511 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  (
_i  x.  ( sin `  A ) ) )  +  ( ( cos `  A )  x.  (
_i  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )
124123oveq2d 6298 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  (
-u 1  x.  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( ( ( cos `  (
k  x.  A ) )  x.  ( _i  x.  ( sin `  A
) ) )  +  ( ( cos `  A
)  x.  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
125103, 112, 1243eqtrd 2512 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
126 mulcl 9572 . . . . . . . . . . . . . 14  |-  ( ( ( sin `  A
)  e.  CC  /\  ( sin `  ( k  x.  A ) )  e.  CC )  -> 
( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
12778, 70, 126syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC )
128 mulm1 9994 . . . . . . . . . . . . 13  |-  ( ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) )  e.  CC  ->  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  =  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )
129127, 128syl 16 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  =  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )
130129oveq2d 6298 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  ( -u 1  x.  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  + 
-u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) )
131130oveq1d 6297 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  (
-u 1  x.  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
132 mulcl 9572 . . . . . . . . . . . . 13  |-  ( ( ( cos `  (
k  x.  A ) )  e.  CC  /\  ( cos `  A )  e.  CC )  -> 
( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  e.  CC )
13377, 68, 132syl2anc 661 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  e.  CC )
134 negsub 9863 . . . . . . . . . . . 12  |-  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  e.  CC  /\  ( ( sin `  A )  x.  ( sin `  (
k  x.  A ) ) )  e.  CC )  ->  ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  -u ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  =  ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  -  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
135133, 127, 134syl2anc 661 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  +  -u ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
136135oveq1d 6297 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  +  -u ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A ) )  x.  ( cos `  A
) )  -  (
( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) ) )
137125, 131, 1363eqtrd 2512 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) ) )
138 cosadd 13757 . . . . . . . . . . . 12  |-  ( ( ( k  x.  A
)  e.  CC  /\  A  e.  CC )  ->  ( cos `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
13965, 138sylancom 667 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) ) ) )
140 mulcom 9574 . . . . . . . . . . . . 13  |-  ( ( ( sin `  (
k  x.  A ) )  e.  CC  /\  ( sin `  A )  e.  CC )  -> 
( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) )  =  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )
14170, 78, 140syl2anc 661 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( sin `  (
k  x.  A ) )  x.  ( sin `  A ) )  =  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) )
142141oveq2d 6298 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  -  ( ( sin `  ( k  x.  A
) )  x.  ( sin `  A ) ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
143139, 142eqtrd 2508 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( cos `  (
( k  x.  A
)  +  A ) )  =  ( ( ( cos `  (
k  x.  A ) )  x.  ( cos `  A ) )  -  ( ( sin `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) )
144143oveq1d 6297 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( cos `  (
( k  x.  A
)  +  A ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) )  =  ( ( ( ( cos `  ( k  x.  A
) )  x.  ( cos `  A ) )  -  ( ( sin `  A )  x.  ( sin `  ( k  x.  A ) ) ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A ) )  x.  ( sin `  A
) )  +  ( ( cos `  A
)  x.  ( sin `  ( k  x.  A
) ) ) ) ) ) )
145137, 144eqtr4d 2511 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  ( ( k  x.  A )  +  A ) )  +  ( _i  x.  ( ( ( cos `  ( k  x.  A
) )  x.  ( sin `  A ) )  +  ( ( cos `  A )  x.  ( sin `  ( k  x.  A ) ) ) ) ) ) )
14685, 96, 1453eqtr4rd 2519 . . . . . . 7  |-  ( ( k  e.  NN0  /\  A  e.  CC )  ->  ( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  ( ( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) ) ) )
147146adantr 465 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( cos `  ( k  x.  A
) )  +  ( _i  x.  ( sin `  ( k  x.  A
) ) ) )  x.  ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) )  =  ( ( cos `  ( ( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  ( ( k  +  1 )  x.  A ) ) ) ) )
14860, 62, 1473eqtrd 2512 . . . . 5  |-  ( ( ( k  e.  NN0  /\  A  e.  CC )  /\  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k
)  =  ( ( cos `  ( k  x.  A ) )  +  ( _i  x.  ( sin `  ( k  x.  A ) ) ) ) )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) )
149148exp31 604 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ ( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) ) )
150149a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
k )  =  ( ( cos `  (
k  x.  A ) )  +  ( _i  x.  ( sin `  (
k  x.  A ) ) ) ) )  ->  ( A  e.  CC  ->  ( (
( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^
( k  +  1 ) )  =  ( ( cos `  (
( k  +  1 )  x.  A ) )  +  ( _i  x.  ( sin `  (
( k  +  1 )  x.  A ) ) ) ) ) ) )
1518, 16, 24, 32, 56, 150nn0ind 10953 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  (
( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) ) )
152151impcom 430 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489   _ici 9490    + caddc 9491    x. cmul 9493    - cmin 9801   -ucneg 9802   NN0cn0 10791   ^cexp 12130   sincsin 13657   cosccos 13658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-ico 11531  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator